高压下惰性元素氦化合物的研究进展

田艺帆 刘寒雨

田艺帆, 刘寒雨. 高压下惰性元素氦化合物的研究进展[J]. 高压物理学报, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635
引用本文: 田艺帆, 刘寒雨. 高压下惰性元素氦化合物的研究进展[J]. 高压物理学报, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635
TIAN Yifan, LIU Hanyu. Progress on Compounds of Inert Element Helium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635
Citation: TIAN Yifan, LIU Hanyu. Progress on Compounds of Inert Element Helium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 030101. doi: 10.11858/gywlxb.20230635

高压下惰性元素氦化合物的研究进展

doi: 10.11858/gywlxb.20230635
基金项目: 国家自然科学基金(12074138);吉林省科技发展计划项目(YDZJ202102CXJD016)
详细信息
    作者简介:

    田艺帆(1997-),女,博士研究生,主要从事极端高压下的计算凝聚态物理研究.E-mail:tianyifan0101@163.com

    通讯作者:

    刘寒雨(1984-),男,博士,教授,主要从事极端高压下的计算凝聚态物理研究.E-mail:lhy@calypso.cn

  • 中图分类号: O521.2

Progress on Compounds of Inert Element Helium under High Pressure

  • 摘要: 氦(He)是元素周期表第2号元素,也是宇宙中除氢以外含量最丰富的元素,广泛存在于恒星和气态巨行星(gas giant planets)的内部高压强(高压)极端环境中。氦因其满壳层的电子结构具有极强的化学惰性,极难与其他元素结合形成化合物。近年来,多项研究工作表明,惰性氦在极端高压条件下具有“不简单”的物理行为,如通过计算“预言”了在高压下稳定的铁氧氦化合物FeO2He和具有反常原子传播的水氦化合物He-H2O等。这些研究工作不仅有助于发现新的化学成键范式,也有力推动了高压物理、地学和行星科学等相关领域的研究进展。本文重点介绍了高压下氦化合物的相关研究进展,聚焦讨论氦化合物在高压下稳定的物理机制,并对未来在高压下设计和制备新型氦化合物的相关研究进行展望。

     

  • 图  He原子插入AB和AB2型离子化合物的一维示意图(红色大圆圈代表带有1或2个正电荷的离子,蓝色小圆圈代表带有1个负电荷的离子,白色圆圈代表氦原子)

    Figure  1.  One-dimensional schematic diagrams of He atom insertion in AB and AB2 ionic compounds (The large andred filled circles represent the ions with +1 or +2 charges, the small and blue filled circles representthe ions with –1 charge, the white circles represent the neutral helium atoms.)

  • [1] BARTLETT N. Xenon hexafluoroplatinate (V) Xe+ [PtF6] [J]. Proceedings of the Chemical Society London, 1962(6): 197–236.
    [2] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [3] MIAO M S. Noble gases in solid compounds show a rich display of chemistry with enough pressure [J]. Frontiers in Chemistry, 2020, 8: 570492. doi: 10.3389/fchem.2020.570492
    [4] MIAO M S, SUN Y H, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508–527. doi: 10.1038/s41570-020-0213-0
    [5] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [6] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [7] SHAO X C, LV J, LIU P, et al. A symmetry-orientated divide-and-conquer method for crystal structure prediction [J]. The Journal of Chemical Physics, 2022, 156(1): 014105. doi: 10.1063/5.0074677
    [8] XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
    [9] ZHU L, LIU H Y, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core [J]. Nature Chemistry, 2014, 6(7): 644–648. doi: 10.1038/nchem.1925
    [10] ZHANG J R, LV J, LI H F, et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions [J]. Physical Review Letters, 2018, 121(25): 255703. doi: 10.1103/PhysRevLett.121.255703
    [11] STAVROU E, YAO Y S, GONCHAROV A F, et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions [J]. Physical Review Letters, 2018, 120(9): 096001. doi: 10.1103/PhysRevLett.120.096001
    [12] LIU C, GAO H, WANG Y, et al. Multiple superionic states in helium-water compounds [J]. Nature Physics, 2019, 15(10): 1065–1070. doi: 10.1038/s41567-019-0568-7
    [13] LOUBEYRE P, JEAN-LOUIS M, LETOULLEC R, et al. High pressure measurements of the He-Ne binary phase diagram at 296 K: evidence for the stability of a stoichiometric Ne(He)2 solid [J]. Physical Review Letters, 1993, 70(2): 178–181. doi: 10.1103/PhysRevLett.70.178
    [14] DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [15] LIU Z, BOTANA J, HERMANN A, et al. Reactivity of He with ionic compounds under high pressure [J]. Nature Communications, 2018, 9(1): 951. doi: 10.1038/s41467-018-03284-y
    [16] XIONG Z H, TSUCHIYA T, VAN ORMAN J A. Helium and argon partitioning between liquid iron and silicate melt at high pressure [J]. Geophysical Research Letters, 2021, 48(3): e2020GL090769. doi: 10.1029/2020GL090769
    [17] RIZO H, WALKER R J, CARLSON R W, et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts [J]. Science, 2016, 352(6287): 809–812. doi: 10.1126/science.aad8563
    [18] JACKSON M G, CARLSON R W, KURZ M D, et al. Evidence for the survival of the oldest terrestrial mantle reservoir [J]. Nature, 2010, 466(7308): 853–856. doi: 10.1038/nature09287
    [19] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [20] NISHI M, KUWAYAMA Y, TSUCHIYA J, et al. The pyrite-type high-pressure form of FeOOH [J]. Nature, 2017, 547(7662): 205–208. doi: 10.1038/nature22823
    [21] LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [22] ZHANG J R, LIU H Y, MA Y M, et al. Direct H-He chemical association in superionic FeO2H2He at deep-Earth conditions [J]. National Science Review, 2022, 9(7): nwab168. doi: 10.1093/nsr/nwab168
    [23] CAVAZZONI C, CHIAROTTI G L, SCANDOLO S, et al. Superionic and metallic states of water and ammonia at giant planet conditions [J]. Science, 1999, 283(5398): 44–46. doi: 10.1126/science.283.5398.44
    [24] LIU H Y, YAO Y S, KLUG D D. Stable structures of He and H2O at high pressure [J]. Physical Review B, 2015, 91(1): 014102. doi: 10.1103/PhysRevB.91.014102
    [25] TEERATCHANAN P, HERMANN A. Computational phase diagrams of noble gas hydrates under pressure [J]. The Journal of Chemical Physics, 2015, 143(15): 154507. doi: 10.1063/1.4933371
    [26] SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z
    [27] LIU C, GAO H, HERMANN A, et al. Plastic and superionic helium ammonia compounds under high pressure and high temperature [J]. Physical Review X, 2020, 10(2): 021007. doi: 10.1103/PhysRevX.10.021007
    [28] GAO H, LIU C, HERMANN A, et al. Coexistence of plastic and partially diffusive phases in a helium-methane compound [J]. National Science Review, 2020, 7(10): 1540–1547. doi: 10.1093/nsr/nwaa064
    [29] SHEN G Y, MEI Q, PRAKAPENKA V B, et al. Effect of helium on structure and compression behavior of SiO2 glass [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6004–6007. doi: 10.1073/pnas.1102361108
    [30] SATO T, FUNAMORI N, YAGI T. Helium penetrates into silica glass and reduces its compressibility [J]. Nature Communications, 2011, 2: 345. doi: 10.1038/ncomms1343
    [31] LI D, LIU Y, TIAN F B, et al. High-pressure structures of helium and carbon dioxide from first-principles calculations [J]. Solid State Communications, 2018, 283: 9–13. doi: 10.1016/j.ssc.2018.06.012
    [32] MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
    [33] DING S C, ZHANG P, YANG K, et al. Formation of solid SiO2He compound at high pressure and high temperature [J]. Physical Review B, 2022, 106(2): 024102. doi: 10.1103/PhysRevB.106.024102
    [34] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [35] HOU J Y, WENG X J, OGANOV A R, et al. Helium-nitrogen mixtures at high pressure [J]. Physical Review B, 2021, 103(6): L060102. doi: 10.1103/PhysRevB.103.L060102
    [36] LI Y W, FENG X L, LIU H Y, et al. Route to high-energy density polymeric nitrogen t-N via He−N compounds [J]. Nature Communications, 2018, 9(1): 722. doi: 10.1038/s41467-018-03200-4
    [37] DING S C, SHI J M, XIE J H, et al. Helium incorporation induced direct-gap silicides [J]. npj Computational Materials, 2021, 7(1): 89. doi: 10.1038/s41524-021-00558-w
    [38] PENG F, SONG X Q, LIU C, et al. Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle [J]. Nature Communications, 2020, 11(1): 5227. doi: 10.1038/s41467-020-19107-y
  • 加载中
图(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  75
  • PDF下载量:  94
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-21
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回