星形混合多胞管在多种冲击角度下的耐撞性评估

孔志成 胡俊 刘崎崎

孔志成, 胡俊, 刘崎崎. 星形混合多胞管在多种冲击角度下的耐撞性评估[J]. 高压物理学报, 2023, 37(3): 034204. doi: 10.11858/gywlxb.20230627
引用本文: 孔志成, 胡俊, 刘崎崎. 星形混合多胞管在多种冲击角度下的耐撞性评估[J]. 高压物理学报, 2023, 37(3): 034204. doi: 10.11858/gywlxb.20230627
KONG Zhicheng, HU Jun, LIU Qiqi. Crashworthiness Evaluation of Star-Shaped Hybrid Multi-Cell Tubes under Multiple Impact Angles[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034204. doi: 10.11858/gywlxb.20230627
Citation: KONG Zhicheng, HU Jun, LIU Qiqi. Crashworthiness Evaluation of Star-Shaped Hybrid Multi-Cell Tubes under Multiple Impact Angles[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034204. doi: 10.11858/gywlxb.20230627

星形混合多胞管在多种冲击角度下的耐撞性评估

doi: 10.11858/gywlxb.20230627
详细信息
    作者简介:

    孔志成(1997-),男,硕士研究生,主要从事材料力学性能研究. E-mail:770589451@qq.com

    通讯作者:

    胡 俊(1973-),男,博士,教授,主要从事材料力学性能研究. E-mail:852527982@qq.com

  • 中图分类号: O383

Crashworthiness Evaluation of Star-Shaped Hybrid Multi-Cell Tubes under Multiple Impact Angles

  • 摘要: 基于混合截面的设计思路,针对星形混合多胞管(star-shaped hybrid multi-cell tube,SHMT)提出了10种截面设计方案。通过数值模拟的方式,深入分析了SHMT在多种冲击角度下的耐撞性。研究发现,混合截面的连接方式以及多边形边数均对星形混合多胞管的吸能性能产生重要影响。在轴向冲击下,采用顶点连接的SHMT(SHMT-V)对于多边形边数的变化较为敏感,八边形SHMT-V(SHMT-V8)的比吸能高达24.31 J/g,相比于四边形SHMT-V(SHMT-V4)提高了71.86%;采用中点连接的SHMT(SHMT-M)拥有更强的力学响应,其碰撞力性能比SHMT-V高30%以上。在斜向冲击下,SHMT的承载能力随着冲击角度的增加而减小,截面不同的SHMT的耐撞性能表现出较大的不确定性。采用优劣解距离法对SHMT的综合耐撞性进行了评估。结果表明,八边形SHMT-M(SHMT-M8)是最优的截面设计方案。研究成果可为薄壁结构的实际应用与耐撞性优化设计提供指导。

     

  • 图  星形混合多胞管的截面设计思路

    Figure  1.  Cross-section design method of SHMT

    图  有限元模型的模拟试件与边界条件

    Figure  2.  Simulated specimens and boundary conditions of finite element model

    图  铝合金6061-O的工程应力-应变曲线[19]

    Figure  3.  Engineering stress-strain curves of 6061-O[19]

    图  SHMT-V6的网格收敛性测试

    Figure  4.  Mesh convergence test on SHMT-V6

    图  实验与有限元模拟的结果对比

    Figure  5.  Comparison of experimental and finite element simulation results

    图  星形混合多胞管在轴向冲击下的碰撞力-位移曲线和能量吸收曲线

    Figure  6.  Force-displacement curves and $ {E}_{\mathrm{A}} $-displacement curves of SHMT under axial impact

    图  星形混合多胞管在斜向冲击下的碰撞力-位移曲线

    Figure  7.  Force-displacement curves of SHMT under oblique impact

    图  SHMT-V4与SHMT-M4的变形过程比较

    Figure  8.  Comparison of deformation process between SHMT-V4 and SHMT-M4

    图  轴向冲击下星形混合多胞管压溃后的变形情况

    Figure  9.  Deformations of SHMT after collapse under axial impact

    图  10  斜向冲击下星形混合多胞管的变形过程比较

    Figure  10.  Comparison of deformation process of SHMT under oblique impact

    图  11  斜向冲击下星形混合多胞管的变形模式

    Figure  11.  Deformation modes of SHMT under oblique impact

    图  12  多种冲击角度下星形混合多胞管的$ {P}_{\mathrm{p}} $

    Figure  12.  $ {P}_{\mathrm{p}} $ of SHMT under multiple impact angles

    图  13  多种冲击角度下星形混合多胞管的$ {P}_{\mathrm{m}} $

    Figure  13.  $ {P}_{\mathrm{m}} $ of SHMT under multiple impact angles

    图  14  SHMT-V与SHMT-M的$ \eta $比较

    Figure  14.  Comparison of $ \eta $ between SHMT-V and SHMT-M

    图  15  SHMT-V与SHMT-M的$ {E}_{\mathrm{S}\mathrm{A}} $比较

    Figure  15.  Comparison of $ {E}_{\mathrm{S}\mathrm{A}} $ between SHMT-V and SHMT-M

    图  16  优劣解距离法的主要步骤

    Figure  16.  Main steps of TOPSIS method

    表  1  星形混合多胞管的几何参数

    Table  1.   Geometric parameters of SHMT

    Specimens$ {l}_{1} $/mm$ {l}_{2} $/mm$ t $/mm Specimens$ {l}_{1} $/mm$ {l}_{2} $/mm$ t $/mm
    SHMT-V428.2848.991.06 SHMT-M420.0048.991.26
    SHMT-V523.5140.721.02SHMT-M519.0240.721.14
    SHMT-V620.0034.641.00SHMT-M617.3234.641.08
    SHMT-V717.3630.060.99SHMT-M715.6430.061.04
    SHMT-V815.3126.510.98SHMT-M814.1426.511.02
    下载: 导出CSV

    表  2  星形混合多胞管的数值矩阵

    Table  2.   Numerical matrix of SHMT

    Specimens${P}{_{\mathrm{p} } }$/kN $ \eta $/% ${E}{_{\mathrm{S}\mathrm{A} } }$/(J·g−1)
    ω=0°ω=10°ω=20°ω=30° ω=0°ω=10°ω=20°ω=30°ω=0°ω=10°ω=20°ω=30°
    SHMT-V447.0733.6929.5821.20 51.8264.9158.6261.32 14.1412.7110.077.55
    SHMT-V549.4631.3631.9926.2162.1884.8369.8951.9417.8815.4412.997.90
    SHMT-V650.9940.0035.5324.3867.7376.1065.9258.5820.0517.6713.598.28
    SHMT-V752.0143.6438.3227.7073.7182.0755.5151.8522.2720.7712.358.36
    SHMT-V854.0847.6140.8929.8277.4485.4455.5256.7524.3123.6313.189.82
    SHMT-M470.5648.2644.7229.7869.2083.2144.9950.4128.3323.2911.658.72
    SHMT-M571.4547.0841.5233.1368.4383.4660.8350.0328.3922.8314.689.62
    SHMT-M673.3050.0041.6630.8370.2683.7059.8852.0629.9424.2914.499.32
    SHMT-M774.9051.4243.5629.3970.0586.6557.1758.4830.4525.8914.459.98
    SHMT-M876.6153.5344.2230.1071.4589.2361.1758.9231.7627.7515.7010.30
    下载: 导出CSV

    表  3  TOPSIS方法得出的评估结果

    Table  3.   Evaluation results obtained using TOPSIS method

    Specimens${S}_{i}^+$${S}_{i}^-$${C}{_{i} }$Rank Specimens${S}_{i}^+$${S}_{i}^-$${C}{_{i} }$Rank
    SHMT-V40.38670.30930.44449 SHMT-M40.33880.26660.440410
    SHMT-V50.29700.31690.51625SHMT-M50.30200.30000.49837
    SHMT-V60.26880.27600.50666SHMT-M60.29740.31860.51724
    SHMT-V70.28090.25780.47868SHMT-M70.29680.34260.53582
    SHMT-V80.27160.30030.52503SHMT-M80.30180.38730.56201
    下载: 导出CSV
  • [1] YAO R Y, PANG T, HE S Y, et al. A bio-inspired foam-filled multi-cell structural configuration for energy absorption [J]. Composites Part B: Engineering, 2022, 238: 109801. doi: 10.1016/j.compositesb.2022.109801
    [2] ZHANG J X, GUO H Y, DU J L, et al. Splitting and curling collapse of metal foam core square sandwich metal tubes: experimental and theoretical investigations [J]. Thin-Walled Structures, 2021, 169: 108346. doi: 10.1016/j.tws.2021.108346
    [3] 邓敏杰, 刘志芳. 仿马尾草薄壁结构的设计与耐撞性研究 [J]. 高压物理学报, 2022, 36(3): 034202.

    DENG M J, LIU Z F. Design and crashworthiness study based on horsetail bionic thin-walled structure [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034202.
    [4] SAN HA N, PHAM T M, HAO H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing [J]. International Journal of Mechanical Sciences, 2021, 201: 106464. doi: 10.1016/j.ijmecsci.2021.106464
    [5] ZHANG J X, YE Y, ZHU Y Q, et al. On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core [J]. International Journal of Solids and Structures, 2020, 202: 111–125. doi: 10.1016/j.ijsolstr.2020.06.021
    [6] PANG T, ZHENG G, FANG J G, et al. Energy absorption mechanism of axially-varying thickness (AVT) multicell thin-walled structures under out-of-plane loading [J]. Engineering Structures, 2019, 196: 109130. doi: 10.1016/j.engstruct.2019.04.074
    [7] ZHANG J X, DU J L, GUO H Y, et al. Splitting and curling performance of metal foam-filled circular tubes [J]. Acta Mechanica, 2022, 233(2): 535–559. doi: 10.1007/s00707-021-03116-z
    [8] WANG Z G, ZHANG J, LI Z D, et al. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression [J]. International Journal of Mechanical Sciences, 2020, 186: 105893. doi: 10.1016/j.ijmecsci.2020.105893
    [9] ZHANG Y, HE N, SONG X Y, et al. On impacting mechanical behaviors of side fractal structures [J]. Thin-Walled Structures, 2020, 146: 106490. doi: 10.1016/j.tws.2019.106490
    [10] DENG X L, LIU W Y, LIN Z Q. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression [J]. Thin-Walled Structures, 2018, 130: 321–331. doi: 10.1016/j.tws.2018.06.002
    [11] WANG Z G, LIU J F, YAO S. On folding mechanics of multi-cell thin-walled square tubes [J]. Composites Part B: Engineering, 2018, 132: 17–27. doi: 10.1016/j.compositesb.2017.07.036
    [12] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. doi: 10.1016/j.ijmecsci.2020.106038
    [13] ALBAK E İ. Crashworthiness design and optimization of nested structures with a circumferentially corrugated circular outer wall and inner ribs [J]. Thin-Walled Structures, 2021, 167: 108219. doi: 10.1016/j.tws.2021.108219
    [14] CHEN B C, ZOU M, LIU G M, et al. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing [J]. International Journal of Impact Engineering, 2018, 115: 48–57. doi: 10.1016/j.ijimpeng.2018.01.005
    [15] GONG C, BAI Z H, WANG Y L, et al. On the crashworthiness performance of novel hierarchical multi-cell tubes under axial loading [J]. International Journal of Mechanical Sciences, 2021, 206: 106599. doi: 10.1016/j.ijmecsci.2021.106599
    [16] ZOU M, XU S C, WEI C G, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo [J]. Thin-Walled Structures, 2016, 101: 222–230. doi: 10.1016/j.tws.2015.12.023
    [17] WU J C, ZHANG Y, ZHANG F, et al. A bionic tree-liked fractal structure as energy absorber under axial loading [J]. Engineering Structures, 2021, 245: 112914. doi: 10.1016/j.engstruct.2021.112914
    [18] CHEN T T, ZHANG Y, Lin J M, et al. Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures [J]. Thin-Walled Structures, 2019, 142: 116–131. doi: 10.1016/j.tws.2019.05.002
    [19] WANG J, ZHANG Y, HE N, et al. Crashworthiness behavior of Koch fractal structures [J]. Materials & Design, 2018, 144: 229–244.
    [20] TIAN K, ZHANG Y, YANG F, et al. Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths [J]. International Journal of Mechanical Sciences, 2020, 166: 105239. doi: 10.1016/j.ijmecsci.2019.105239
    [21] SONG J F, XU S C, ZHOU J F, et al. Experiment and numerical simulation study on the bionic tubes with gradient thickness under oblique loading [J]. Thin-Walled Structures, 2021, 163: 107624. doi: 10.1016/j.tws.2021.107624
    [22] TABACU S. Analysis of circular tubes with rectangular multi-cell insert under oblique impact loads [J]. Thin-Walled Structures, 2016, 106: 129–147. doi: 10.1016/j.tws.2016.04.024
    [23] TRAN T N, BAROUTAJI A. Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading [J]. Engineering Failure Analysis, 2018, 93: 241–256. doi: 10.1016/j.engfailanal.2018.07.003
    [24] HUANG H, XU S C. Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads [J]. Thin-Walled Structures, 2019, 144: 106333. doi: 10.1016/j.tws.2019.106333
    [25] YU X H, QIN Q H, ZHANG J X, et al. Crushing and energy absorption of density-graded foam-filled square columns: experimental and theoretical investigations [J]. Composite Structures, 2018, 201: 423–433. doi: 10.1016/j.compstruct.2018.06.053
    [26] NIKKHAH H, GUO F L, CHEW Y, et al. The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading [J]. Thin-Walled Structures, 2017, 119: 412–420. doi: 10.1016/j.tws.2017.06.036
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  56
  • PDF下载量:  49
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-04-11
  • 录用日期:  2023-04-11
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回