多阶式层级梯度蜂窝结构的共面冲击响应

李成兵 李锐 张吉涛 叶强 李仁富

李成兵, 李锐, 张吉涛, 叶强, 李仁富. 多阶式层级梯度蜂窝结构的共面冲击响应[J]. 高压物理学报, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604
引用本文: 李成兵, 李锐, 张吉涛, 叶强, 李仁富. 多阶式层级梯度蜂窝结构的共面冲击响应[J]. 高压物理学报, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604
LI Chengbing, LI Rui, ZHANG Jitao, YE Qiang, LI Renfu. In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604
Citation: LI Chengbing, LI Rui, ZHANG Jitao, YE Qiang, LI Renfu. In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034203. doi: 10.11858/gywlxb.20230604

多阶式层级梯度蜂窝结构的共面冲击响应

doi: 10.11858/gywlxb.20230604
基金项目: 国家自然科学基金(552174209)
详细信息
    作者简介:

    李成兵(1977-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:lichbing@mail.ustc.edu.cn

  • 中图分类号: O347.1

In-Plane Impact Response of Multi-Order Hierarchical Gradient Honeycomb Structure

  • 摘要: 为改善蜂窝结构共面的力学性能,基于传统六边形蜂窝结构,建立了六边形层级蜂窝结构,并利用层级蜂窝代替传统六边形蜂窝部分胞元层,复合成一种新型多阶式层级梯度蜂窝结构。利用显式动力学有限元方法研究了层级梯度蜂窝的共面在不同冲击速度作用下的冲击响应特性和能量吸收能力。研究结果表明:层级梯度蜂窝的变形模式与塑性坍塌强度和冲击速度有关;层级梯度蜂窝冲击端和固定端在不同冲击速度作用下的名义应力-应变曲线均与其变形模式有关;不同的复合方式会导致层级梯度蜂窝具有不同的平台应力和比吸能,且在高速冲击时其平台应力比传统六边形蜂窝提高45.4%~63.8%,能量吸收提升10.8%~34.1%。相对密度会影响层级梯度蜂窝的能量吸收能力。

     

  • 图  蜂窝单胞结构

    Figure  1.  Unit cell of honeycomb structure

    图  中阶层级蜂窝在不同l2下的应力-应变曲线

    Figure  2.  Stress-strain curves of middle-order hierarchical honeycomb under different l2

    图  层级梯度蜂窝有限元计算模型

    Figure  3.  Schematic diagram of finite element model of hierarchical gradient honeycomb

    图  层级梯度蜂窝结构设计模型

    Figure  4.  Structure design model of hierarchical gradient honeycomb

    图  力-位移曲线及变形模式的有限元模型验证

    Figure  5.  Finite element model verification of force-displacement curves and deformation patterns

    图  层级梯度蜂窝的变形模式

    Figure  6.  Deformation modes of hierarchical gradient honeycomb

    图  层级梯度蜂窝冲击端的名义应力-应变曲线

    Figure  7.  Nominal stress-strain curves at the impact end of hierarchical gradient honeycomb

    图  层级梯度蜂窝固定端的名义应力-应变曲线

    Figure  8.  Nominal stress-strain curves at the supporting end of hierarchical gradient honeycombs

    图  层级梯度蜂窝的名义应力-应变曲线和能量吸收效率曲线

    Figure  9.  Nominal stress-strain curve and energy absorption efficiency curve of hierarchical gradient honeycomb

    图  10  不同冲击速度下层级梯度蜂窝的平台应力

    Figure  10.  Plateau stress of hierarchical gradient honeycomb at different impact velocities

    图  11  不同相对密度下层级梯度蜂窝的平台应力

    Figure  11.  Plateau stress of hierarchical gradient honeycomb at different relative densities

    图  12  不同冲击速度下层级梯度蜂窝的比吸能特性

    Figure  12.  Specific energy absorption characteristics of hierarchical gradient honeycomb at different impact velocities

    图  13  不同相对密度下层级梯度蜂窝的比吸能特性

    Figure  13.  Specific energy absorption characteristics of hierarchical gradient honeycomb at different relative densities

    表  1  单胞结构的几何参数

    Table  1.   Geometric parameters of a unit cell

    Structurel/mmt/mmh/mmα/(°)
    HL15.000.30120
    HL23.500.301.15120
    HL32.000.301.15120
    下载: 导出CSV

    表  2  材料参数[7]

    Table  2.   Material parameters[7]

    Materialρ/(kg·m–3)E/GPaμσy/MPa
    Aluminum2 700690.376
    Rigid plate7 800210
    下载: 导出CSV

    表  3  不同速度下层级梯度蜂窝的密实应变

    Table  3.   Densification strains of hierarchical gradient honeycomb at different impact velocities

    v/(m·s−1)εd
    L123L321L213L312
    100.622 20.609 40.615 80.609 4
    300.647 70.621 50.634 60.621 6
    500.673 50.641 40.673 80.654 3
    1000.755 00.776 10.747 90.762 0
    下载: 导出CSV

    表  4  相对密度参数

    Table  4.   Relative density parameters

    IdentifierStructuret/mml/mm${\rho _{{\text{com}}}}$
    RD1HL30.282.000.228
    HL20.283.50
    HL10.285.00
    RD2HL30.302.000.244
    HL20.303.50
    HL10.305.00
    RD3HL30.322.000.259
    HL20.323.50
    HL10.325.00
    下载: 导出CSV
  • [1] WANG Z G, LIU J F. Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression [J]. Composites Part B: Engineering, 2019, 165: 626–635. doi: 10.1016/j.compositesb.2019.01.070
    [2] 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性 [J]. 高压物理学报, 2019, 33(6): 064104.

    CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104.
    [3] KHAN M K, BAIG T, MIRZA S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb [J]. Materials Science and Engineering: A, 2012, 539: 135–142. doi: 10.1016/j.msea.2012.01.070
    [4] 于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析 [J]. 高压物理学报, 2022, 36(1): 014204.

    YU P S, LIU Z F, LI S Q. Design and crashworthiness analysis of new bionic honeycomb structure [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014204.
    [5] 张新春, 沈振峰, 吴鹤翔, 等. 多段填充复合蜂窝结构的动态响应特性研究 [J]. 湖南大学学报: 自然科学版, 2020, 47(4): 67–75.

    ZHANG X C, SHEN Z F, WU H X, et al. Study on dynamic response characteristics of multi-segment filled composite honeycomb structure [J]. Journal of Hunan University: Natural Science, 2020, 47(4): 67–75.
    [6] 刘颖, 何章权, 吴鹤翔, 等. 分层递变梯度蜂窝材料的面内冲击性能 [J]. 爆炸与冲击, 2011, 31(3): 225–231.

    LIU Y, HE Z Q, WU H X, et al. In-plane impact properties of hierarchical gradient gradient honeycomb materials [J]. Explosion and Shock Waves, 2011, 31(3): 225–231.
    [7] 李坚, 孟卫华, 张大海, 等. 分层密度梯度蜂窝材料面内动态压缩及吸能特性 [J]. 应用力学学报, 2021, 38(6): 2369–2375.

    LI J, MENG W H, ZHANG D H, et al. In-plane dynamic compression and energy absorption characteristics of hierarchical density gradient honeycomb materials [J]. Chinese Journal of Applied Mechanics, 2021, 38(6): 2369–2375.
    [8] NIU X Q, XU F X, ZOU Z, et al. In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures [J]. Composite Structures, 2022, 299: 116064. doi: 10.1016/j.compstruct.2022.116064
    [9] QIAO J X, CHEN C Q. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids and Structures, 2016, 85/86: 57–66.
    [10] WANG Z G, DENG J J, LIU K, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus [J]. Thin-Walled Structures, 2022, 171: 108816. doi: 10.1016/j.tws.2021.108816
    [11] LIU H, ZHANG E T, NG B F. In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity [J]. Composite Structures, 2021, 270: 114106. doi: 10.1016/j.compstruct.2021.114106
    [12] LI Z, JIANG Y, WANG T, et al. In-plane crushing behaviors of piecewise linear graded honeycombs [J]. Composite Structures, 2018, 207: 425437.
    [13] WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4
    [14] GIBSON L J, ASHBY M F. Cellular solids [M]. Cambridge University Press, 1997.
    [15] GIOVANNI T, MAICON C R. On the convergence of the primal hybrid finite element method on quadrilateral meshes [J]. Applied Numerical Mathematics, 2022, 181: 552560.
    [16] TAO Y, CHEN M J, CHEN H S, et al. Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory [J]. Composite Structures, 2015, 132: 644651.
    [17] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377.

    ZHANG X C, LIU Y. Research on dynamic properties of density gradient honeycomb materials [J]. Engineering Mechanics, 2012, 29(8): 372–377.
    [18] 何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究 [J]. 工程力学, 2015, 32(4): 191–196.

    HE Q, MA D W, ZHANG Z D. Study on dynamic properties of layered yield strength gradient honeycomb materials [J]. Engineering Mechanics, 2015, 32(4): 191–196.
    [19] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究 [J]. 振动与冲击, 2020, 39(18): 89–95, 117.

    SHEN Z F, ZHANG X C, BAI J P, et al. Study on impact response characteristics of negative Poisson’s ratio inner concave ring honeycomb structure [J]. Journal of Vibration and Shock, 2020, 39(18): 89–95, 117.
    [20] 白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究 [J]. 振动与冲击, 2020, 39(18): 145–152.

    BAI J P, ZHANG X C, SHEN Z F, et al. Study on dynamic crushing behavior of multi-cell thin-walled structures under shock loading [J]. Vibration and Shock, 2020, 39(18): 145–152.
    [21] 乔及森, 李明, 苗红丽. 串联梯度蜂窝结构的面内力学性能 [J]. 塑性工程学报, 2021, 28(11): 115–123.

    QIAO J S, LI M, MIAO H L. In-plane mechanical properties of series gradient honeycomb structures [J]. Chinese Journal of Plastic Engineering, 2021, 28(11): 115–123.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  53
  • PDF下载量:  32
出版历程
  • 收稿日期:  2023-01-09
  • 修回日期:  2023-02-27
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-05-19
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回