碳纤维增强复合材料夹芯板的砰击损伤特性

王松 李应刚 黄鑫华 李晓彬

王松, 李应刚, 黄鑫华, 李晓彬. 碳纤维增强复合材料夹芯板的砰击损伤特性[J]. 高压物理学报, 2023, 37(1): 014203. doi: 10.11858/gywlxb.20220653
引用本文: 王松, 李应刚, 黄鑫华, 李晓彬. 碳纤维增强复合材料夹芯板的砰击损伤特性[J]. 高压物理学报, 2023, 37(1): 014203. doi: 10.11858/gywlxb.20220653
WANG Song, LI Yinggang, HUANG Xinhua, LI Xiaobin. Damage Characteristics of Carbon Fiber Reinforced Composite Sandwich Panels Subjected to Water Slamming Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014203. doi: 10.11858/gywlxb.20220653
Citation: WANG Song, LI Yinggang, HUANG Xinhua, LI Xiaobin. Damage Characteristics of Carbon Fiber Reinforced Composite Sandwich Panels Subjected to Water Slamming Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014203. doi: 10.11858/gywlxb.20220653

碳纤维增强复合材料夹芯板的砰击损伤特性

doi: 10.11858/gywlxb.20220653
基金项目: 国家自然科学基金(11972269);武汉理工大学三亚科教创新园开放基金(2021KF0029)
详细信息
    作者简介:

    王 松(1997-),男,硕士,主要从事复合材料游艇结构性研究. E-mail:aiwosong@outlook.com

    通讯作者:

    李应刚(1988-),男,博士,副教授,主要从事船舶结构安全与冲击防护研究. E-mail:liyinggang@whut.edu.cn

  • 中图分类号: O347; U674.7

Damage Characteristics of Carbon Fiber Reinforced Composite Sandwich Panels Subjected to Water Slamming Loading

  • 摘要: 复合材料高速船舶在复杂多变的海况中航行时,由于船体结构自身的大幅升沉和纵荡运动,不可避免地会与波浪产生砰击作用,可能产生结构损伤甚至失效。采用欧拉-拉格朗日方法建立了复合材料层合板砰击数值模型,将模拟结果与文献中的试验结果进行对比,验证了流固耦合渐进损伤分析方法的可靠性。在此基础上,建立了碳纤维增强复合材料夹芯板入水砰击流固耦合数值模型,编写了VUMAT子程序,研究了复合材料夹芯板渐进损伤演化特性,分析了砰击水动力载荷、射流和水压分布特性,研究了砰击速度和斜升角对夹芯板损伤特性的影响规律。结果表明,碳纤维增强复合材料夹芯板入水砰击过程经历4个阶段,即初始增长阶段、波动阶段、急剧上升阶段和迅速下降阶段。砰击载荷作用下复合材料夹芯板产生基体损伤和分层损伤,随着砰击速度提升和斜升角增大,砰击水动力载荷逐渐增加,复合材料夹芯板面板损伤范围逐渐扩大。

     

  • 图  砰击模型和夹芯板示意图

    Figure  1.  Schematic diagram of the slamming model and sandwich panel

    图  渐进损伤分析法流程图

    Figure  2.  Flow chart of progressive damage analysis

    图  网格划分及边界条件示意图

    Figure  3.  Schematics of meshing and boundary conditions

    图  数值模型验证

    Figure  4.  Verification of the numerical model

    图  水动力载荷曲线和不同时刻下的射流

    Figure  5.  Hydrodynamic force and flow jet at different moments

    图  渐进损伤与不同时刻下的挠度

    Figure  6.  Progressive damage and deflection at different moments

    图  不同速度下的水动力及微应变曲线

    Figure  7.  Hydrodynamic force and microstrain curves under different velocities

    图  不同速度下的下面板基体的拉伸损伤以及分层损伤

    Figure  8.  Matrix tension damage of the bottom panel and delamination damage of bottom face sheet under different velocities

    图  不同斜升角下水动力及微应变曲线

    Figure  9.  Hydrodynamic force and microstrain curves under different deadrise angles

    图  10  不同斜升角下的下面板基体拉伸损伤和分层损伤

    Figure  10.  Matrix tension damage and delamination damage of bottom face sheet under different deadrise angle

    表  1  复合材料面板的材料参数[12]

    Table  1.   Material properties of composite panel[12]

    E1/GPaE2/GPaE3/GPaν12 ν13ν23G12/GPa G13/GPaG23/GPaρ/(kg·m3)
    146.911.3811.380.30 0.300.426.1 6.15.71380
    Xt/MPaXc/MPaYt/MPaYc/MPaZt/MPaZc/MPaS12/MPa S13/MPaS23/MPa
    1730137929.5268.215171.8133.8 133.8100
    下载: 导出CSV
  • [1] PALOMBA G, EPASTO G, CRUPI V. Lightweight sandwich structures for marine applications: a review [J]. Mechanics of Advanced Materials and Structures, 2021: 1–26.
    [2] 汪璇, 裴轶群, 周方宇, 等. 船舶复合材料应用现状及发展趋势 [J]. 造船技术, 2021, 49(4): 74–80. doi: 10.12225/j.issn.1000-3878.2021.04.20210414

    WANG X, PEI Y Q, ZHOU F Y, et al. Application status and development trend of ship composite materials [J]. Marine Technology, 2021, 49(4): 74–80. doi: 10.12225/j.issn.1000-3878.2021.04.20210414
    [3] HOSUR M V, MOHAMMED A A, ZAINUDDIN S, et al. Impact performance of nanophased foam core sandwich composites [J]. Materials Science and Engineering: A, 2008, 498(1/2): 100–109. doi: 10.1016/j.msea.2007.11.156
    [4] ZHU Y F, SUN Y G. Dynamic response of foam core sandwich panel with composite facesheets during low-velocity impact and penetration [J]. International Journal of Impact Engineering, 2020, 139: 103508. doi: 10.1016/j.ijimpeng.2020.103508
    [5] LONG S C, YAO X, WANG H, et al. Failure analysis and modeling of foam sandwich laminates under impact loading [J]. Composite Structures, 2018, 197: 10–20. doi: 10.1016/j.compstruct.2018.05.041
    [6] ELAMIN M, LI B, TAN K T. Impact damage of composite sandwich structures in arctic condition [J]. Composite Structures, 2018, 192: 422–433. doi: 10.1016/j.compstruct.2018.03.015
    [7] LIU D, BAI R X, LEI Z K, et al. Experimental and numerical study on compression-after-impact behavior of composite panels with foam-filled hat-stiffener [J]. Ocean Engineering, 2020, 198: 106991. doi: 10.1016/j.oceaneng.2020.106991
    [8] 刘姗姗, 刘亚军, 张英杰, 等. 碳纤维-泡沫铝夹芯板低速冲击响应 [J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872

    LIU S S, LIU Y J, ZHANG Y J, et al. Low-velocity impact response of carbon fiber-aluminum foam sandwich plate [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
    [9] 刘莹, 王沁宇, 杨博, 等. 湿热老化对亚麻纤维增强泡沫夹芯板冲击力学性能的影响 [J]. 高压物理学报, 2022, 36(4): 044102.

    LIU Y, WANG Q Y, YANG B, et al. Effect of hygrothermal aging on impact performance of flax fiber-reinforced foam sandwich panels [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044102.
    [10] 司海龙, 赵南, 胡嘉骏. 船艏自由落体砰击载荷模型试验研究 [J]. 船舶力学, 2020, 24(4): 445–455. doi: 10.3969/j.issn.1007-7294.2020.04.004

    SI H L, ZHAO N, HU J J. Experimental study of slamming loads on ship bow during free water entry [J]. Journal of Ship Mechanics, 2020, 24(4): 445–455. doi: 10.3969/j.issn.1007-7294.2020.04.004
    [11] SHAMS A, ZHAO S, PORIFIRI M. Hydroelastic slamming of flexible wedges: modeling and experiments from water entry to exit [J]. Physics of Fluids, 2017, 29(3): 037107. doi: 10.1063/1.4978631
    [12] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. doi: 10.1177/002199838702100904
    [13] HASSOON O H, TARFAOUI M, El MOUMEN A, et al. Numerical evaluation of dynamic response for flexible composite structures under slamming impact for naval applications [J]. Applied Composite Materials, 2018, 25(3): 689–706. doi: 10.1007/s10443-017-9646-0
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  55
  • PDF下载量:  28
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-10-10
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回