钢板/POZD复合结构在近距空爆载荷下的抗爆性能

王逸平 汪维 杨建超 汪剑辉 王幸

王逸平, 汪维, 杨建超, 汪剑辉, 王幸. 钢板/POZD复合结构在近距空爆载荷下的抗爆性能[J]. 高压物理学报, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650
引用本文: 王逸平, 汪维, 杨建超, 汪剑辉, 王幸. 钢板/POZD复合结构在近距空爆载荷下的抗爆性能[J]. 高压物理学报, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650
WANG Yiping, WANG Wei, YANG Jianchao, WANG Jianhui, WANG Xing. Blast Resistant Performance of Steel/POZD Composite Structures under Close-Range Air Blast Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650
Citation: WANG Yiping, WANG Wei, YANG Jianchao, WANG Jianhui, WANG Xing. Blast Resistant Performance of Steel/POZD Composite Structures under Close-Range Air Blast Loading[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014104. doi: 10.11858/gywlxb.20220650

钢板/POZD复合结构在近距空爆载荷下的抗爆性能

doi: 10.11858/gywlxb.20220650
基金项目: 国家自然科学基金(11972201);宁波市自然科学基金(202003N4147)
详细信息
    作者简介:

    王逸平(1997- ),男,硕士研究生,主要从事爆炸与冲击动力学研究. E-mail:wangyiping20217@163.com

    通讯作者:

    汪 维(1983- ),男,博士,副教授,主要从事工程结构抗爆毁伤评估研究. E-mail:wangwei7@nbu.edu.cn

    杨建超(1976- ),男,硕士,高级工程师,主要从事工程结构抗爆毁伤评估研究. E-mail:jiebao9630@163.com

  • 中图分类号: O383

Blast Resistant Performance of Steel/POZD Composite Structures under Close-Range Air Blast Loading

  • 摘要: 为研究钢板/聚异氰氨酸酯噁唑烷(polyisocyanate oxazodone,POZD)聚合物高分子材料复合结构在近距空爆载荷下的抗爆性能,开展了近距空爆试验,通过观察试验模型的损伤以及相关数据统计,分析了钢板/POZD复合结构的变形失效模式。采用LS-DYNA软件进行数值模拟,通过与试验结果进行对比,验证了数值模拟方法的准确性,并进一步分析了钢板/POZD复合结构跨中位移变化和能量吸收特性。结果表明:在相同钢板厚度下,钢板/POZD复合结构较单一钢板具有更优越的抗爆性能,钢板呈现出3种不同的变形失效模式;在钢板/POZD复合结构中,当钢板和POZD均未出现破口时,钢板的塑性应变能占总能量吸收的大部分;钢板/POZD复合结构中心点最大位移逐渐增大,且变形速度先升高后降低。研究结果可为工程中钢板/POZD复合结构的抗爆防护设计提供参考。

     

  • 图  (a) 钢板平面布置(单位:mm), (b) 复合板结构配置

    Figure  1.  (a) Steel plate arrangement (Unit: mm), (b) structural configuration of composite plates

    图  试验装置

    Figure  2.  Test device

    图  有限元模型

    Figure  3.  Finite element model

    图  钢板/POZD复合结构网格视图

    Figure  4.  Grid view of finite element model for steel/POZD composite structure

    图  不同应变率下POZD的应力-应变曲线[16]

    Figure  5.  Stress-strain curves of POZD at different strain rates[16]

    图  工况S-1与工况SP-1的损伤形态比较

    Figure  6.  Comparison of damage morphology of cases S-1 and SP-1

    图  工况S-2与工况SP-2损伤形态比较

    Figure  7.  Comparison of damage morphology of plates for cases S-2 and SP-2

    图  POZD涂覆复合钢板中的应力波传播

    Figure  8.  Stress wave propagation in POZD coated composite steel plates

    图  3种失效模式

    Figure  9.  Three failure modes

    图  10  背面涂覆12mm厚POZD涂层时钢板的变形

    Figure  10.  Deformation of steel plates coated with 12 mm-thick POZD coating on the backside

    图  11  数值模拟得到的4种工况的钢板跨中位移时程曲线

    Figure  11.  Time-history curves of steel plate mid-span displacement in four cases by simulation

    图  12  数值模拟得到的工况SP-1和工况SP-2能量吸收时程曲线

    Figure  12.  Time-history curves of energy absorption in cases SP-1 and SP-2 by simulation

    图  13  数值模拟得到的各工况下钢板与POZD的能量吸收对比

    Figure  13.  Comparison of energy absorption between steel plate and POZD under different conditions by simulation

    表  1  POZD和普通聚脲材料的力学性能

    Table  1.   Mechanical properties of POZD and ordinary polyurea

    MaterialsDensity/
    (g·cm−3)
    Tensile strength/
    MPa
    Elastic modulus/
    GPa
    Poisson’s ratioAdhesion (steel plate)/
    MPa
    POZD1.02≥252300.3≥8
    Ordinary polyurea1.02162130.36
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    Case no.PlatesExplosive POZD
    TNT mass/gR/mmThickness/mmCoating position
    S-1Steel plates500200 0
    S-2 Steel plates5003500
    SP-1Steel/POZD plates50020012Back
    SP-2 Steel/POZD plates5003508Back
    下载: 导出CSV

    表  3  Q235钢的材料参数[15]

    Table  3.   Material parameters of Q235 steel[15]

    E/GPaρ/(kg·m−3)νσ0/MPaEt/MPaC/s−1PFs
    21078500.323525040.450.28
    下载: 导出CSV

    表  4  TNT炸药的状态方程参数[8]

    Table  4.   Parameters of equation of state for TNT explosive[8]

    e/(MJ·kg−1)A/GPaB/GPaR1R2ω
    6.74371.23.2314.150.950.3
    下载: 导出CSV

    表  5  4种工况的破口尺寸和跨中最大位移

    Table  5.   Break size and maximum displacement in the middle of the four test conditions

    Case No.R/mmThickness/mmFailure modeBreak size/
    (mm×mm)
    ymax/mm
    SteelPOZD
    S-12004Petalling330×290
    S-23504Mode Ⅱ*c90×10
    SP-1200412Mode Ⅰ70
    SP-235048Mode Ⅰ65
    下载: 导出CSV
  • [1] 卢广照, 姜春兰, 毛亮, 等. 薄钢板在CL-20基含铝炸药内爆载荷作用下的变形响应和工程预测 [J]. 兵工学报, 2020, 41(8): 1509–1518. doi: 10.3969/j.issn.1000-1093.2020.08.005

    LU G Z, JIANG C L, MAO L, et al. Deformation response and its engineering prediction of steel plate subjected to internal blast loading from CL-20-based aluminized explosive charges [J]. Acta Armamentarii, 2020, 41(8): 1509–1518. doi: 10.3969/j.issn.1000-1093.2020.08.005
    [2] MOHOTTI D, NGO T, MENDIS P, et al. Polyurea coated composite aluminium plates subjected to high velocity projectile impact [J]. Materials & Design, 2013, 52: 1–16.
    [3] MOHOTTI D, FERNANDO P L N, WEERASINGHE D, et al. Evaluation of effectiveness of polymer coatings in reducing blast-induced deformation of steel plates [J]. Defence Technology, 2021, 17(6): 1895–1904. doi: 10.1016/j.dt.2020.11.009
    [4] 冯加和, 董奇, 张刘成, 等. 聚脲弹性体在爆炸防护中的研究进展 [J]. 含能材料, 2020, 28(4): 277–290.

    FENG J H, DONG Q, ZHANG L C, et al. Review on using polyurea elastomer for enhanced blast-mitigation [J]. Chinese Journal of Energetic Materals, 2020, 28(4): 277–290.
    [5] 甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟 [J]. 兵工学报, 2009, 30(2): 15–19.

    GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer [J]. Acta Armamentarii, 2009, 30(2): 15–19.
    [6] LI Y, CHEN C, HOU H L, et al. The influence of spraying strategy on the dynamic response of polyurea-coated metal plates to localized air blast loading: experimental investigations [J]. Polymers (Basel), 2019, 11(11): 1888. doi: 10.3390/polym11111888
    [7] 廖瑜, 石少卿, 梁朝科, 等. 聚脲-编织玻璃纤维网格布复合材料加固钢板抗冲击力学性能研究 [J]. 兵工学报, 2018, 39(10): 1988–1996. doi: 10.3969/j.issn.1000-1093.2018.10.015

    LIAO Y, SHI S Q, LIANG C K, et al. Dynamics performances of polyurea-woven fiberglass mesh composite [J]. Acta Armamentarii, 2018, 39(10): 1988–1996. doi: 10.3969/j.issn.1000-1093.2018.10.015
    [8] 王喜梦, 刘均, 陈长海, 等. 近距空爆载荷下钢板/聚脲复合结构动响应特性仿真 [J]. 中国舰船研究, 2021, 16(2): 116–124. doi: 10.19693/j.issn.1673-3185.01833

    WANG X M, LIU J, CHEN C H, et al. Simulation on dynamic response characteristics of steel/polyurea composite structures under close-range air blast loading [J]. Chinese Journal of Ship Research, 2021, 16(2): 116–124. doi: 10.19693/j.issn.1673-3185.01833
    [9] HOU H L, CHEN C H, CHENG Y, et al. Effect of structural configuration on air blast resistance of polyurea-coated composite steel plates: experimental studies [J]. Materials & Design, 2019, 182: 108049.
    [10] CHEN C H, WANG X, HOU H L, et al. Effect of strength matching on failure characteristics of polyurea coated thin metal plates under localized air blast loading: experiment and numerical analysis [J]. Thin-Walled Structures, 2020, 154: 106819. doi: 10.1016/j.tws.2020.106819
    [11] 杨建超, 汪剑辉, 周旺进, 等. POZD涂层钢筋混凝土板抗震塌性能 [J]. 兵工学报, 2020, 42(1): 7–11.

    YANG J C, WANG J H, ZHOU W J, et al. Anti-collapsing performance of POZD coated reinforced concrete slab [J]. Acta Armamentarii, 2020, 42(1): 7–11.
    [12] 杨建超, 汪剑辉, 陈力, 等. 喷涂POZD弹性涂层防护门抗爆性能试验研究 [J]. 防护工程, 2021, 42(1): 133–140.

    YANG J C, WANG J H, CHEN L, et al. Experimental study on blast resistance performance of blast door with POZD elastic coating [J]. Protective Engineering, 2021, 42(1): 133–140.
    [13] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 14–23. doi: 10.11883/bzycj-2020-0180

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 14–23. doi: 10.11883/bzycj-2020-0180
    [14] WANG W, YANG J, WANG J, et al. Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions [J]. International Journal of Impact Engineering, 2021, 149: 103777. doi: 10.1016/j.ijimpeng.2020.103777
    [15] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下双层防爆舱壁结构抗爆性能仿真分析 [J]. 海军工程大学学报, 2012, 24(3): 26–34. doi: 10.3969/j.issn.1009-3486.2012.03.006

    CHEN C H, ZHU X, HOU H L, et al. Numerical analysis of blast resistance of double-layer bulkhead structures subjected to close-range air blast [J]. Journal of Naval University of Engineering, 2012, 24(3): 26–34. doi: 10.3969/j.issn.1009-3486.2012.03.006
    [16] WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. doi: 10.1016/j.dt.2021.07.005
    [17] WU G, WANG X, JI C, et al. Anti-blast properties of 6063-T5 aluminum alloy circular tubes coated with polyurea elastomer: experiments and numerical simulations [J]. Thin-Walled Structures, 2021, 164: 107842. doi: 10.1016/j.tws.2021.107842
    [18] 杨建超, 汪剑辉, 王幸, 等. 聚异氰氨酸脂噁唑烷弹性涂层钢筋混凝土板抗震塌机理 [J]. 科学技术与工程, 2022, 22(4): 1338–1343. doi: 10.3969/j.issn.1671-1815.2022.04.005

    YANG J C, WANG J H, WANG X, et al. Anti-collapsing mechanism of reinforced concrete slab with polyisocyanate-oxazodone elastic coating [J]. Science Technology and Engineering, 2022, 22(4): 1338–1343. doi: 10.3969/j.issn.1671-1815.2022.04.005
    [19] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2010: 52−60.

    WANG L L. Foundation of stress waves [M]. Beijing: National Defense Industry Press, 2010: 52−60.
    [20] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 29(10): 2723–2736. doi: 10.1016/j.engstruct.2007.01.021
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  53
  • PDF下载量:  39
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-09-30
  • 网络出版日期:  2023-02-24
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回