应用于多层靶准等熵压缩实验的反积分方法

陶沛东 张红平 张志友 李牧

陶沛东, 张红平, 张志友, 李牧. 应用于多层靶准等熵压缩实验的反积分方法[J]. 高压物理学报, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640
引用本文: 陶沛东, 张红平, 张志友, 李牧. 应用于多层靶准等熵压缩实验的反积分方法[J]. 高压物理学报, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640
TAO Peidong, ZHANG Hongping, ZHANG Zhiyou, LI Mu. Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640
Citation: TAO Peidong, ZHANG Hongping, ZHANG Zhiyou, LI Mu. Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 012301. doi: 10.11858/gywlxb.20220640

应用于多层靶准等熵压缩实验的反积分方法

doi: 10.11858/gywlxb.20220640
基金项目: 国家自然科学基金(11972330,11974321);国防基础科研科学挑战专题(TZ2016001)
详细信息
    作者简介:

    陶沛东(1997-),男,硕士研究生,主要从事动高压物理研究. E-mail:3121153292@qq.com

    通讯作者:

    张红平(1981-),女,博士,副教授,主要从事计算力学和数值方法研究.E-mail:zhanghongping@sztu.edu.cn

  • 中图分类号: O521; O347.1

Backward Integration Method for Multilayer Target Quasi-Isentropic Compression Experiments

  • 摘要: 针对磁驱动和激光驱动准等熵压缩实验物理中多层结构靶设计和实验数据处理的需求,在反积分处理方法的基础上,提出了多层靶的层间传递方法,实现了多层靶内加载历史的反演计算。通过正、反积分数值实验以及激光驱动实验的正、反计算,验证了多层靶中反积分数据处理方法的有效性,在绝大部分计算范围内,多层靶的反积分处理精度可以达到1%以内。利用反积分方法开展了多层靶物理实验的波形设计,并分析了不同厚度胶层的多层靶对斜波加载实验的影响。

     

  • 图  多层结构靶示意图(a)与多层结构靶中反积分的计算流程(b)

    Figure  1.  Structure of multilayer target (a) and flow chart of backward integration method in multilayer target (b)

    图  以两侧为铝的夹层样品为例的正、反积分法计算得到的各界面的压力历史(从上到下分别为加载面(红色)、夹层前后界面和后测量面(蓝色)):(a) Al-Cu-Al靶材料,Cu材料的阻抗约为两侧Al材料阻抗的3倍;(b) Al-CH-Al靶材料,CH材料的阻抗约为两侧Al材料阻抗的1/3;(c) 反积分法计算的加载面压力与初始加载压力的相对差异

    Figure  2.  Pressure histories on loading surface from forward integration (FI) and backward integration (BI), the top curves (red) are correlated to loading surface and the bottom curve (blue) is the rear measured surface: (a) Al-Cu-Al target, the impedance of Cu material is about 3 times that of Al material; (b) Al-CH-Al target, the impedance of CH material is about 1/3 times that of Al material; (c) relative discrepancy between the loading surface pressure from backward integration and initial loading pressure

    图  激光驱动多层靶结构

    Figure  3.  Structure of laser driven multilayer target

    图  激光驱动多层靶中界面1与界面2之间Al层的反积分计算结果

    Figure  4.  Backward integration calculated results of Al layer on laser driven multilayer targets between the interface 1 and interface 2

    图  激光驱动多层靶反积分计算结果:(a) 压力等高云图,(b)多层靶各界面处压力历史的正、反积分计算结果

    Figure  5.  Backward integration calculated result of laser driven multilayer target: (a) pressure contour, (b) pressure histories of interfaces calculated by forward/backward integration method

    图  选择不同积分面与CFL数时的反积分计算结果:(a) 应力曲线和偏差值,(b)偏差较大时的低压段计算结果

    Figure  6.  Multilayer backward integration with different numerical method and CFL number: (a) pressure curve and derivation value, (b) the low-pressure section data with larger deviation

    图  考虑不同胶层厚度的多层靶的反积分压力云图:(a) 0.1 $ \text{μ}\mathrm{m} $,(b) 1.0 $ \text{μ}\mathrm{m} $,(c) 5.0 $ \text{μ}\mathrm{m} $,(d) 10.0 $ \text{μ}\mathrm{m} $

    Figure  7.  Pressure contours of multilayer baseplate with different glue thicknesses: (a) 0.1 $ \text{μ}\mathrm{m} $, (b) 1.0 $ \text{μ}\mathrm{m} $, (c) 5.0 $ \text{μ}\mathrm{m} $, (d) 10.0 $ \text{μ}\mathrm{m} $

    图  根据后界面斜波波形反向计算得到的多层靶加载面需要的压力波形

    Figure  8.  Calculated drive profile for a designed pressure output with different glue thicknesses

  • [1] FRATANDUONO D E, SMITH R F, ALI S J, et al. Probing the solid phase of noble metal copper at terapascal conditions [J]. Physical Review Letters, 2020, 124(1): 015701. doi: 10.1103/PhysRevLett.124.015701
    [2] KRAUS R G, HEMLEY R J, ALI S J, et al. Measuring the melting curve of iron at super-Earth core conditions [J]. Science, 2022, 375(6577): 202–205. doi: 10.1126/science.abm1472
    [3] HAYES D B. Backward integration of the equations of motion to correct for free surface perturbations: SAND2001−1440 [R]. Livermore: Sandia National Laboratories, 2001.
    [4] DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. doi: 10.1063/1.2196110
    [5] SEAGLE C T, PORWITZKY A J. Shock-ramp compression of tin near the melt line [J]. AIP Conference Proceedings, 2018, 1979(1): 040005. doi: 10.1063/1.5044783
    [6] ROTHMAN S D, ALI S J, BROWN J L, et al. Shock-ramp analysis test problem [J]. Journal of Applied Physics, 2021, 129(18): 185901. doi: 10.1063/5.0045562
    [7] 王刚华, 柏劲松, 孙承纬, 等. 准等熵压缩流场反演技术研究 [J]. 高压物理学报, 2008, 22(2): 149–152. doi: 10.11858/gywlxb.2008.02.007

    WANG G H, BAI J S, SUN C W, et al. Backward integration method for tracing isentropic compression field [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149–152. doi: 10.11858/gywlxb.2008.02.007
    [8] 王刚华, 孙承纬, 王桂吉, 等. 带窗口准等熵压缩实验的流场反演技术 [J]. 爆炸与冲击, 2009, 29(1): 101–104. doi: 10.11883/1001-1455(2009)01-0101-04

    WANG G H, SUN C W, WANG G J, et al. Backward analysis for isentropic compression experiments with windows backed on samples [J]. Explosion and Shock Waves, 2009, 29(1): 101–104. doi: 10.11883/1001-1455(2009)01-0101-04
    [9] 张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. doi: 10.6052/0459-1879-2011-1-lxxb2010-053

    ZHANG H P, SUN C W, LI M, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. doi: 10.6052/0459-1879-2011-1-lxxb2010-053
    [10] 张红平, 柏劲松, 王刚华. 复杂加载下材料动态响应的数据反演技术 [J]. 计算力学学报, 2013, 30(6): 790–795. doi: 10.7511/jslx201306007

    ZHANG H P, BAI J S, WANG G H. Material dynamic response analysis under complex loading using backward integration method [J]. Chinese Journal of Computational Mechanics, 2013, 30(6): 790–795. doi: 10.7511/jslx201306007
    [11] 张红平, 罗斌强, 王桂吉, 等. 基于特征线反演的斜波加载实验数据处理与分析 [J]. 高压物理学报, 2016, 30(2): 123–129. doi: 10.11858/gywlxb.2016.02.006

    ZHANG H P, LUO B Q, WANG G J, et al. Inverse characteristic analysis of ramp loading experiments [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 123–129. doi: 10.11858/gywlxb.2016.02.006
    [12] RIGG P A, KNUDSON M D, SCHARFF R J, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility [J]. Journal of Applied Physics, 2014, 116(3): 033515. doi: 10.1063/1.4890714
    [13] CHAURASIA S, TRIPATHI S, LESHMA P, et al. Shock pressure measurements in polyvinyl alcohol (PVA) films using multi-frame optical shadowgraphy [J]. Journal of Physics: Conference Series, 2012, 377: 012042. doi: 10.1088/1742-6596/377/1/012042
  • 加载中
图(8)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  119
  • PDF下载量:  31
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-08-28
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回