电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究

李洪伟 吴延梦 吴立辉 杨赛群 管月强 黄昕旭 章万龙

李洪伟, 吴延梦, 吴立辉, 杨赛群, 管月强, 黄昕旭, 章万龙. 电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究[J]. 高压物理学报, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638
引用本文: 李洪伟, 吴延梦, 吴立辉, 杨赛群, 管月强, 黄昕旭, 章万龙. 电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究[J]. 高压物理学报, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638
LI Hongwei, WU Yanmeng, WU Lihui, YANG Saiqun, GUAN Yueqiang, HUANG Xinxu, ZHANG Wanlong. Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638
Citation: LI Hongwei, WU Yanmeng, WU Lihui, YANG Saiqun, GUAN Yueqiang, HUANG Xinxu, ZHANG Wanlong. Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015301. doi: 10.11858/gywlxb.20220638

电子雷管起爆条件下隧道掏槽孔与辅助孔的延时优化试验研究

doi: 10.11858/gywlxb.20220638
基金项目: 国家自然科学基金(11872002);安徽省教育厅高校科学研究项目(13190248)
详细信息
    作者简介:

    李洪伟(1979-),男,硕士,教授,主要从事控制爆破技术研究. E-mail:1227002529@qq.com

    通讯作者:

    吴延梦(1999-),男,硕士研究生,主要从事岩石破碎理论与技术研究.E-mail:1904477218@qq.com

  • 中图分类号: O346.1; TD235

Experimental Study on Delay Time Optimization of Tunnel Cutting Holes and Caving Holes under Electronic Detonator Initiation Condition

  • 摘要: 起爆延时严重影响隧道爆破掘进效率,研究隧道精确控制爆破中岩石的破碎效果和掘进效率具有重要意义。为此,开展了隧道爆破中掏槽孔与辅助孔之间延时的相似模型试验研究,分析了不同起爆延时情况下岩石的破碎特征。模型试验表明,在隧道爆破中精确延时电子雷管对于提高爆破效果具有明显优势,得到了一定条件下模型试验与现场试验中起爆延时的相似关系。由现场试验可知:掏槽孔与辅助孔之间的最佳延时范围为15~25 ms,此时炮孔的利用率最高。结合相似理论的模型试验,得到最佳延时范围为8~24 ms,与现场试验结果具有较好的一致性,研究结果对隧道爆破掏槽孔与辅助孔之间的延时选取具有指导意义。

     

  • 图  模型试验中的炮孔布置

    Figure  1.  Hole layout in model experiment

    图  破碎效果

    Figure  2.  Crushing effect

    图  碎岩块度质量百分比统计

    Figure  3.  Statistic of fragmentation mass fraction

    图  爆后爆腔结果

    Figure  4.  Results of cavity after explosion

    图  原爆破设计方案

    Figure  5.  Original blasting design scheme

    图  原方案下的爆破效果

    Figure  6.  Blasting effect under original scheme

    图  现场炮孔分布(a)及装药现场(b)

    Figure  7.  Field blasthole distribution (a) and charge instructions (b)

    图  炮孔利用率

    Figure  8.  Blasthole utilization

    表  1  模型及现场岩石的相关参数

    Table  1.   Model and field rock-related parameters

    Material$\,\rho$/(kg·m−3)${\sigma }{_{\mathrm{c} } }$/MPa${C}{_{\mathrm{p} } }$/(m·s−1)E/GPa$ \mu $
    Cast material208020.82982.117.10.177
    Rocks on site28401214900530.21
    下载: 导出CSV

    表  2  模型试验方案[21]

    Table  2.   Model test schemes[21]

    Scheme$ \tau $/msa/cmb/cmh1/cmd0/cmd1/cm
    T-105.010.013.02.01.2
    T-215.010.013.02.01.2
    T-335.010.013.02.01.2
    T-455.010.013.02.01.2
    下载: 导出CSV

    表  3  碎岩统计

    Table  3.   Rock fragmentation statistics

    SchemeMass/kg (Mass fraction/%)
    0–19.0 mm19.0–26.5 mm26.5–37.5 mm37.5–53.0 mm53.0–63.0 mm63.0–75.0 mm>75.0 mm
    T-11.60(13.66)0.62(5.83) 1.16(11.24)1.27(22.90)0.65(5.41)0.98(7.83)3.28(33.14)
    T-21.64(23.26)0.70(15.31)1.35(15.41)2.75(15.31)0.65(5.79)0.94(6.38)3.98(18.55)
    T-32.37(19.37)1.56(11.58)1.57(15.93)1.56(17.19)0.59(4.70)0.65(8.42)1.89(22.81)
    T-42.76(25.77)1.65(9.57) 2.27(13.58)2.45(12.65)0.67(2.62)1.20(6.56)3.25(29.24)
    下载: 导出CSV

    表  4  爆腔参数和炮孔利用率

    Table  4.   Cavity parameters and blast hole utilization rate

    SchemeBlast cavity volume/cm3Detonation depth/cmBlast hole utilization/%
    T-1796011.4087.7
    T-2676011.6389.5
    T-3945011.5989.2
    T-4859511.5288.6
    下载: 导出CSV

    表  5  原隧道爆破参数

    Table  5.   Original tunnel blasting parameters

    Serial numberName of hole$ \tau $/msd2/mmL1/ma1/cmW/kgd3/mmNQ/kg
    H0Holes in the middle 1002.200
    H1Kibble hole0422.2401.53246.0
    H2Pilot hole 130422.0801.33245.2
    H3Pilot hole 280422.0601.2321012.0
    H4Pilot hole 3130422.0601.23267.2
    H5Pilot hole 4180422.2701.2321619.2
    H6Pilot hole 5230422.2801.2321619.2
    H7Profile accuracy hole 1280422.2600.4322811.2
    H8Bottom hole 1330422.2901.43279.8
    H9Bottom hole 2380422.21001.532710.5
    下载: 导出CSV

    表  6  原方案爆破效果

    Table  6.   Blasting effect of original scheme

    Holela/mBu/% Holela/mBu/%
    Kibble hole0.2688.2 Profile accuracy hole0.3683.6
    Pilot hole0.3085.0Bottom hole0.4181.4
    下载: 导出CSV

    表  7  优化后起爆网路设计方案

    Table  7.   Optimized initiation network design scheme

    $ \tau / $msDelay time/ms
    H1H2H3H4H5H6H7H8H9
    3003080130180230280330380
    1501565115165215265315365
    2502575125175225275325375
    3503585135185235285335385
    4504595145195245295345395
    下载: 导出CSV

    表  8  炮孔利用率

    Table  8.   Blasthole utilization

    $ \tau $/msHoleL1/mla/mBu/%Bu,ave/%Cycle footage/m
    15Kibble hole2.20.1493.689.51.92
    Pilot hole2.00.1791.5
    Profile accuracy hole2.20.2688.2
    Bottom hole2.20.3484.5
    25Kibble hole2.20.1991.487.21.87
    Pilot hole2.00.2289.0
    Profile accuracy hole2.20.3285.5
    Bottom hole2.20.3882.7
    30 Kibble hole 2.2 0.26 88.2 84.6 1.82
    Pilot hole2.00.3085.0
    Profile accuracy hole2.20.3683.6
    Bottom hole2.20.4181.4
    35Kibble hole2.20.3086.482.71.78
    Pilot hole2.00.3483.0
    Profile accuracy hole2.20.4081.8
    Bottom hole2.20.4579.5
    45Kibble hole2.20.3683.679.51.71
    Pilot hole2.00.4080.0
    Profile accuracy hole2.20.4778.6
    Bottom hole2.20.5375.9
    下载: 导出CSV
  • [1] 中华人民共和国工业和信息化部. 关于推进民爆行业高质量发展的意见 [EB/OL]. (2018-11-13) [2022-08-11]. http://www.gov.cn/gongbao/content/2019/content_5366488.htm.

    Ministry of Industry and Information Technology of the People’s Republic of China. Opinions on promoting high quality development of civil explosion industry [EB/OL]. (2018-11-13)[2022-08-11]. http://www.gov.cn/gongbao/content/2019/content_5366488.htm.
    [2] 中华人民共和国工业和信息化部. 工业数码电子雷管标准体系建设方案(试行) [EB/OL]. (2021-10-27) [2021-11-02]. https://wap.miit.gov.cn/jgsj/aqs/gzdt/art/2021/art_f93f3384a8444e15b1beecdd7ae4cf6a.html.

    Ministry of Industry and Information Technology of the People’s Republic of China. Industrial digital electronic detonator standard system construction scheme (Trial) [EB/OL]. (2021-10-27) [2021-11-02]. https://wap.miit.gov.cn/jgsj/aqs/gzdt/art/2021/art_f93f3384a8444e15b1beecdd7ae4cf6a.html.
    [3] 李创新, 刘仕佳, 常根召, 等. 电子雷管推广使用问题探究 [J]. 煤矿爆破, 2018, 36(2): 14–16. doi: 10.3969/j.issn.1674-3970.2018.02.005

    LI C X, LIU S J, CHANG G Z, et al. Research on the use of electronic detonators [J]. Coal Mine Blasting, 2018, 36(2): 14–16. doi: 10.3969/j.issn.1674-3970.2018.02.005
    [4] 姚华南. 电子雷管在巷道掘进中的应用研究 [J]. 煤矿爆破, 2021, 39(4): 25–28. doi: 10.3969/j.issn.1674-3970.2021.04.008

    YAO H N. Application of electronic detonator in tunnel excavation [J]. Coal Mine Blasting, 2021, 39(4): 25–28. doi: 10.3969/j.issn.1674-3970.2021.04.008
    [5] 吴献明, 李中辉, 张文锡, 等. 数码电子雷管与非电导爆管雷管在露天深孔爆破中的应用对比 [J]. 西部探矿工程, 2021, 33(11): 14–16. doi: 10.3969/j.issn.1004-5716.2021.11.005

    WU X M, LI Z H, ZHANG W X, et al. Application comparison of digital electronic detonator and non-conductive detonator in open pit deep hole blasting [J]. West-China Exploration Engineering, 2021, 33(11): 14–16. doi: 10.3969/j.issn.1004-5716.2021.11.005
    [6] CHO S H, KANEKO K. Influence of the applied pressure waveform on the dynamic fracture processes in rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 771–784. doi: 10.1016/j.ijrmms.2004.02.006
    [7] HUANG D, QIU X Y, SHI X Z, et al. Experimental and numerical investigation of blast-induced vibration for short-delay cut blasting in underground mining [J]. Shock and Vibration, 2019(2): 5843516. doi: 10.1155/2019/5843516
    [8] 黄宝龙. 岩巷掘进准直眼掏槽爆破试验研究 [D]. 北京: 中国矿业大学(北京), 2011.

    HUANG B L. Research on quasi-parallel cutting blast in rock drivage [D]. Beijing: China University of Mining and Technology (Beijing), 2011.
    [9] 单仁亮, 黄宝龙, 蔚振廷, 等. 岩巷掘进准直眼掏槽爆破模型试验研究 [J]. 岩石力学与工程学报, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004

    SHAN R L, HUANG B L, WEI Z T, et al. Model test of quasi-parallel cut blasting in rock drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004
    [10] SHAPIRO V Y. Efficiency of cut configuration in driving tunnels with a set of deep blast holes [J]. Soviet Mining Science, 1989, 25(4): 379–386. doi: 10.1007/BF02528560
    [11] 龚敏, 文斌, 王华. 掏槽参数对煤矿岩巷爆破效果的影响 [J]. 爆炸与冲击, 2015, 35(4): 576–584. doi: 10.11883/1001-1455(2015)04-0576-09

    GONG M, WEN B, WANG H. Influences of cut parameters on blasting effect in rock roadway of coal mine [J]. Explosion and Shock Waves, 2015, 35(4): 576–584. doi: 10.11883/1001-1455(2015)04-0576-09
    [12] 龚敏, 王灿华, 梁立勋, 等. 硬岩掘进中主要爆破参数的确定与作用 [J]. 煤炭学报, 2015, 40(7): 1526–1533. doi: 10.13225/j.cnki.jccs.2014.1766

    GONG M, WANG C H, LIANG L X, et al. Function analysis and confirming method of key blasting parameters for excavating in hard rock [J]. Journal of China Coal Society, 2015, 40(7): 1526–1533. doi: 10.13225/j.cnki.jccs.2014.1766
    [13] 傅洪贤, 沈周, 赵勇, 等. 隧道电子雷管爆破降振技术试验研究 [J]. 岩石力学与工程学报, 2012, 31(3): 597–603. doi: 10.3969/j.issn.1000-6915.2012.03.018

    FU H X, SHEN Z, ZHAO Y, et al. Experimental study of decreasing vibration technology of tunnel blasting with digital detonator [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 597–603. doi: 10.3969/j.issn.1000-6915.2012.03.018
    [14] 李清, 于强, 张迪, 等. 地铁隧道精确控制爆破延期时间优选及应用 [J]. 振动与冲击, 2018, 37(13): 135–140, 170. doi: 10.13465/j.cnki.jvs.2018.13.021

    LI Q, YU Q, ZHANG D, et al. Metro tunnel precisely controlled blasting’s delay time optimization and its application [J]. Journal of Vibration and Shock, 2018, 37(13): 135–140, 170. doi: 10.13465/j.cnki.jvs.2018.13.021
    [15] 孔祥松, 刘响钟, 周纪军, 等. 岩石工程爆破破碎的机理研究 [J]. 矿业研究与开发, 2013, 33(4): 118–121. doi: 10.13827/j.cnki.kyyk.2013.04.011

    KONG X S, LIU X Z, ZHOU J J, et al. Study on fragmentation mechanism for rock blasting engineering [J]. Mining Research and Development, 2013, 33(4): 118–121. doi: 10.13827/j.cnki.kyyk.2013.04.011
    [16] 马芹永, 袁璞, 张经双, 等. 立井直眼微差爆破模型试验振动测试与分析 [J]. 振动与冲击, 2015, 34(6): 172–176. doi: 10.13465/j.cnki.jvs.2015.06.033

    MA Q Y, YUAN P, ZHANG J S, et al. Blasting vibration measurement and analyses of millisecond blasting models for vertical shaft blasting [J]. Journal of Vibration and Shock, 2015, 34(6): 172–176. doi: 10.13465/j.cnki.jvs.2015.06.033
    [17] 李鹏, 吕良哲, 陈智山, 等. 隧道爆破中合理微差时间的选择 [J]. 采矿技术, 2011, 11(5): 127–128. doi: 10.3969/j.issn.1671-2900.2011.05.048

    LI P, LYU L Z, CHEN Z S, et al. Selection of reasonable millisecond time in tunnel blasting [J]. Mining Technology, 2011, 11(5): 127–128. doi: 10.3969/j.issn.1671-2900.2011.05.048
    [18] 戴俊. 爆破工程 [M]. 2版. 北京: 机械工业出版社, 2015.

    DAI J. Blasting engineering [M]. 2nd ed. Beijing: China Machine Press, 2015.
    [19] 周传波. 深孔爆破一次成井模拟优化与应用研究 [D]. 武汉: 中国地质大学, 2004.

    ZHOU C B. Study on simulation optimization and application of shaft formation by one deep-hole blasting [D]. Wuhan: China University of Geosciences, 2004.
    [20] 宗琦, 傅菊根, 徐华生. 立井冻土掘进爆破技术的研究与应用 [J]. 岩土力学, 2007, 28(9): 1992–1996. doi: 10.3969/j.issn.1000-7598.2007.09.043

    ZONG Q, FU J G, XU H S. Study and application of frozen soil blasting technique in shaft [J]. Rock and Soil Mechanics, 2007, 28(9): 1992–1996. doi: 10.3969/j.issn.1000-7598.2007.09.043
    [21] 李洪伟, 黄昕旭, 吴立辉, 等. 电子雷管在岩巷爆破中掏槽孔微差时间试验研究及数值模拟 [J]. 金属矿山, 2022(7): 64–72. doi: 10.19614/j.cnki.jsks.202207009

    LI H W, HUANG X X, WU L H, et al. Experimental study and numerical simulation on micro-difference time of cutting hole of electronic detonator in rock roadway blasting [J]. Metal Mine, 2022(7): 64–72. doi: 10.19614/j.cnki.jsks.202207009
    [22] 唐建华, 宗琦, 马长世. 试析筒形直眼掏槽产生大块的机理 [J]. 煤矿爆破, 1995(4): 21–23.

    TANG J H, ZONG Q, MA C S. Analysis on the mechanism of large block in cylindrical straight eye cutting [J]. Coal Mine Blasting, 1995(4): 21–23.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  128
  • PDF下载量:  40
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2022-10-15
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回