基于物质点法的射弹侵彻双层隔板充液结构的数值模拟

谢桂兰 宋慕清 龚曙光 侯昆 左立来 肖芳昱

谢桂兰, 宋慕清, 龚曙光, 侯昆, 左立来, 肖芳昱. 基于物质点法的射弹侵彻双层隔板充液结构的数值模拟[J]. 高压物理学报, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602
引用本文: 谢桂兰, 宋慕清, 龚曙光, 侯昆, 左立来, 肖芳昱. 基于物质点法的射弹侵彻双层隔板充液结构的数值模拟[J]. 高压物理学报, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602
XIE Guilan, SONG Muqing, GONG Shuguang, HOU Kun, ZUO Lilai, XIAO Fangyu. Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602
Citation: XIE Guilan, SONG Muqing, GONG Shuguang, HOU Kun, ZUO Lilai, XIAO Fangyu. Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602

基于物质点法的射弹侵彻双层隔板充液结构的数值模拟

doi: 10.11858/gywlxb.20220602
基金项目: 国家自然科学基金(51475403)
详细信息
    作者简介:

    谢桂兰(1966-),女,博士,教授,主要从事材料成形过程数值模拟研究. E-mail:xieguilan@xtu.edu.cn

    通讯作者:

    龚曙光(1964-),男,博士,教授,主要从事CAE技术的理论与应用研究. E-mail:gongsg@xtu.edu.cn

  • 中图分类号: O385; TB122

Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method

  • 摘要: 在充液结构内设置双层隔板空气夹层可以有效减弱水锤效应带来的危害。为了研究双层隔板间距及位置对水锤效应的影响机理,通过已发表的试验数据对数值模拟方法进行验证后,基于物质点法开展了射弹侵彻双层隔板充液结构的数值模拟,分析了空穴形成过程、射弹剩余速度、固定点液体压力峰值、出入射壁及双隔板壁变形等情况。结果表明:随着双层隔板间距增大,充液结构的变形程度呈先减轻后加重的趋势;双层隔板位置越靠近入射壁,对压力冲击波传导的阻碍作用越强,充液结构的抗侵彻能力越好。

     

  • 图  水锤效应过程[1]

    Figure  1.  Process of hydrodynamic ram[1]

    图  试验装置[1]、几何模型、1/2物质点离散模型和压力测点位置[1]

    Figure  2.  Test device[1], geometric profile of cross section, 1/2 discrete model of MPM and location of pressure measuring points[1]

    图  水锤效应过程对比

    Figure  3.  Comparison of hydrodynamic ram process

    图  100%充液率下测点压力时程曲线

    Figure  4.  Time-history curves of pressure at measuring points with 100% filling rate

    图  双层隔板充液结构模型和压力测点位置

    Figure  5.  Model of double-layer plate liquid-filled structure and the location of the pressure measuring points

    图  双层隔板间距分布

    Figure  6.  Setting of double-layer plate spacing

    图  不同双层隔板间距情况下空穴的形成过程

    Figure  7.  Process of cavitation with different settings of double-layer plate spacing

    图  双层隔板间距不同时射弹的剩余速度

    Figure  8.  Residual velocity of projectile under different settings of double-layer plate spacing

    图  双层隔板间距不同时不同测点的压力时程曲线

    Figure  9.  Time-history curves of pressure at different measuring points under different settings of double-layer plate spacing

    图  10  出入射壁及双隔板的变形情况

    Figure  10.  Deformation of the entry wall, exit wall and the double-layer plates

    图  11  双层隔板位置

    Figure  11.  Position setting of the double-layer plate

    图  12  不同双层隔板位置情况下空穴的形成过程

    Figure  12.  Process of cavitation with different position settings of the double-layer plate

    图  13  双层隔板位置不同时射弹的剩余速度

    Figure  13.  Residual velocity of projectile with different position settings of the double-layer plates

    图  14  双层隔板位置不同时不同测点的压力时程曲线

    Figure  14.  Time-history curve of pressure at different measuring points with different position settings of the double-layer plates

    图  15  出、入射壁及双隔板变形情况

    Figure  15.  Deformation of the entry wall, exit wall and the double-layer plates

    表  1  油箱和射弹的材料参数[7]

    Table  1.   Material parameters of fuel tank and projectile[7]

    Materialρ/(kg∙m−3)E/GPaνA/MPaB/MPanCmD1
    Al6063-T52700710.332001440.62010.2
    4340 steel7830207 0.28
    下载: 导出CSV

    表  2  水的材料参数[7]

    Table  2.   Material parameters of water[7]

    Materialρ0/(kg∙m−3)vd/(mPa∙s)c0/(m∙s−1)S1S2S3γ0a
    Water10000.8914481.979000.113.0
    下载: 导出CSV
  • [1] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81–91. doi: 10.1016/j.ijimpeng.2008.04.006
    [2] BALL R E . The fundamentals of aircraft combat survivability: analysis and design [M]. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics, 2003: 799−864.
    [3] BALL R E. Aircraft fuel tank vulnerability to hydraulic ram: modification of the northrop finite element computer code BR-1 to include fluid-structure interaction; theory and user’s manual for BR-1HR: NPS-57BP74071 [R]. California: Naval Postgraduate School, 1974.
    [4] FUHS A E, BALL R E , POWER H L. FY 73 hydraulic ram studies: AD776536 [R]. California: Naval Postgraduate School, 1974.
    [5] LUNDSTROM E A. Hydraulic ram model for high explosive ammunition [C]//ASME Pressure Vessels and Piping Conference. Honolulu, HI, 1989.
    [6] 李亚智, 陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟[J]. 机械强度, 2007, 29(1): 5.

    LI Y Z, CHEN G. Numerical simulation of liquid-filled tank response to projectile impact [J]. Journal of Mechanical Strength, 2007, 29(1): 5.
    [7] VARAS D. Numerical modelling of the hydrodynamic ram phenomenon [J]. International Journal of Impact Engineering, 2009, 36(3): 363–374. doi: 10.1016/j.ijimpeng.2008.07.020
    [8] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram [J]. Aerospace Science and Technology, 2012, 16(1): 19–28. doi: 10.1016/j.ast.2011.02.003
    [9] ARTERO-GUERRERO J A, VARAS D, PERNAS-SANCHEZ J, et al. Experimental analysis of an attenuation method for hydrodynamic ram effects [J]. Materials & Design, 2018, 155: 451–462.
    [10] 张宇, 王彬文, 刘小川, 等. 充液格栅结构抗射弹冲击特性研究 [J]. 科学技术与工程, 2020, 20(18): 9.

    ZHANG Y, WANG B W, LIU X C, et al. Research on anti-projectile impact characteristics of liquid-filled grid structure [J]. Science Technology and Engineering, 2020, 20(18): 9.
    [11] 李营, 赵鹏铎, 张春辉, 等. 空气夹层对含液结构在球形弹体侵彻作用下动态响应的影响 [J]. 振动与冲击, 2018, 37(3): 186–195. doi: 10.13465/j.cnki.jvs.2018.03.030

    LI Y, ZHAO P D, ZHANG C H, et al. Influences of air-contain structure on dynamic responses of liquid-filled structures under spherical projectile penetration [J]. Journal of Vibration and Shock, 2018, 37(3): 186–195. doi: 10.13465/j.cnki.jvs.2018.03.030
    [12] 张雄. 物质点法 [M]. 北京: 清华大学出版社, 2013: 38−42.

    ZHANG X. Material point method [M]. Beijing: Tsinghua University Press, 2013: 38−42.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  61
  • PDF下载量:  40
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-07-05
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-02-05

目录

    /

    返回文章
    返回