电磁轨道炮接触热时空分布特性分析

王志恒 万敏 李小将

王志恒, 万敏, 李小将. 电磁轨道炮接触热时空分布特性分析[J]. 高压物理学报, 2016, 30(6): 511-516. doi: 10.11858/gywlxb.2016.06.012
引用本文: 王志恒, 万敏, 李小将. 电磁轨道炮接触热时空分布特性分析[J]. 高压物理学报, 2016, 30(6): 511-516. doi: 10.11858/gywlxb.2016.06.012
WANG Zhi-Heng, WAN Min, LI Xiao-Jiang. Characteristics of Temporal and Spatial Distribution of Railgun Contact Heat[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 511-516. doi: 10.11858/gywlxb.2016.06.012
Citation: WANG Zhi-Heng, WAN Min, LI Xiao-Jiang. Characteristics of Temporal and Spatial Distribution of Railgun Contact Heat[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 511-516. doi: 10.11858/gywlxb.2016.06.012

电磁轨道炮接触热时空分布特性分析

doi: 10.11858/gywlxb.2016.06.012
详细信息
    作者简介:

    王志恒(1988—), 男,博士研究生,主要从事电磁发射技术研究.E-mail:wzh5625412@163.com

  • 中图分类号: O442

Characteristics of Temporal and Spatial Distribution of Railgun Contact Heat

  • 摘要: 电磁轨道炮接触热时空分布特性是进行电枢熔化抑制、轨道散热设计和热管理的重要依据。在建立电枢与轨道接触压力、接触电阻计算模型的基础上,建立了接触热时空分布的计算模型,对电磁轨道炮的接触热时空分布进行了仿真计算,并对其特性进行了分析。针对接触热在电枢运动初始阶段相对集中的问题,研究了电枢前级加速对接触热时空分布特性的影响。仿真分析结果表明:接触热主要来源于电流焦耳热,焦耳热功率曲线与驱动电流曲线具有较大相似性;大部分接触热在电枢运动初始阶段传导给轨道,这是引起此阶段轨道烧蚀的主要原因;电枢运动初始阶段单位长度轨道传导的接触热和发射过程中电枢的热积累随着电枢初速度的增大而减小。

     

  • 图  电枢与轨道接触压力

    Figure  1.  Contact pressure between armature and rails

    图  发射过程中的驱动电流波形、电枢速度和电枢位移曲线

    Figure  2.  Curves for input current, armature velocity and armature displacement

    图  发射过程中的摩擦热功率

    Figure  3.  Power curves for friction heat andJoule heat during launching

    图  轨道各位置单位长度传导接触热

    Figure  4.  Contanct heat conducted by unit lengthrail versus displacement

    图  不同电枢初速度条件下单位长度轨道传导接触热

    Figure  5.  Contanct heat conducted by unit length rail versusdisplacement for different armature initial velocities

    图  不同电枢初速度条件下接触热功率曲线

    Figure  6.  Contanct heat power cureves fordifferent armature intial velocities

    表  1  电磁轨道炮摩擦热和焦耳热的相关计算参数

    Table  1.   Parameters for calculating railgun friction heat and Joule heat

    ρ1/(nΩ·m) ρ2/(nΩ·m) H1/(N/mm2) H2/(N/mm2) n F0/(kN) α η μ0 μ
    28.3 17.5 2×108 5×108 1 300 1 0.166π 0.1 0.3 0.2
    下载: 导出CSV
  • [1] 陶孟仙, 任兆杏.固体电枢电热物理特性研究[J].火炮发射与控制学报, 2001(1):52-54. doi: 10.3969/j.issn.1673-6524.2001.01.015

    TAO M X, REN Z X.Characteristic study research on electrothermal properties of solid armature[J].Journal of Gun Launch & Control, 2001(1):52-54. doi: 10.3969/j.issn.1673-6524.2001.01.015
    [2] 徐伟东, 袁伟群, 陈允.电磁轨道发射器连续发射的滑动电接触[J].强激光与粒子束, 2012, 24(3):668-772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201203036

    XU W D, YUAN W Q, CHEN Y.Sliding electrical contact performance of electromagnetic launcher system in rapid fire mode[J].High Power Laser and Particle Beams, 2012, 24(3):668-772. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201203036
    [3] 巩飞, 翁春生.电磁轨道炮滑动电接触的热效应[J].高压物理学报, 2014, 28(1):91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201401017.htm

    GONG F, WENG C S.Thermal effect of sliding electrical contact in electromagnetic railgun[J].Chinese Journal of High Pressure Physics, 2014, 28(1):91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201401017.htm
    [4] MOTES D, KEENA K, STEFANI F.Thermal analysis of high-energy railgun tests[J].IEEE T Plasma Sci, 2012, 40(1):124-130. doi: 10.1109/TPS.2011.2174375
    [5] BAYATI M S, KESHTKAR A, KESHTKAR A.Thermal computation in railgun by hybrid time domain technique 3-D-FEM-IEM[J].IEEE T Plasma Sci, 2011, 39(1):18-20. doi: 10.1109/TPS.2010.2070847
    [6] SMITH A N, MCGLASSON B T, BERNARDES J S.Heat generation during the firing of a capacitor-based railgun system[J].IEEE T Magn, 2007, 43(1):190-193. doi: 10.1109/TMAG.2006.887647
    [7] VANICEK H, SATAPATHY S.Thermal characteristics of a laboratory electromagnetic launcher[J].IEEE T Magn, 2005, 41(1):251-255. doi: 10.1109/TMAG.2004.839286
    [8] LI H, LEI B, LÜ Q A.Analysis on thermal character of interface between rail and armature for electromagnetic railgun[J].IEEE T Plasma Sci, 2013, 41(5):1462-1430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=113b49e4b2594e4f0930011005bfb0f6
    [9] MARSHALL R A, WANG Y.Railguns:their science and technology[M].Beijing:China Machine Press, 2004:33-34.
    [10] 陈允, 徐伟东, 袁伟群.电磁发射中铝电枢与不同材料导轨间滑动电接触特性[J].高电压技术, 2013, 39(4):937-942. doi: 10.3969/j.issn.1003-6520.2013.04.025

    CHEN Y, XU W D, YUAN W Q.Sliding electrical contacts between aluminum armature and different material rails in railgun[J].High Voltage Engineering, 2013, 39(4):937-942. doi: 10.3969/j.issn.1003-6520.2013.04.025
    [11] 郭凤仪, 陈忠华.电接触理论及其应用技术[M].北京:中国电力出版社, 2008:6-9.

    GUO F Y, CHEN Z H.Electrical contact theory and its application technology[M].Beijing:China Electric Power Press, 2008:6-9.
    [12] 金龙文, 雷彬, 张倩.电磁轨道炮热生成机理及温度场数值仿真[J].火炮发射与控制学报, 2012(4):9-12. doi: 10.3969/j.issn.1673-6524.2012.04.003

    JIN L W, LEI B, ZHANG Q.Heat generation mechanism analysis and numerical simulation of temperature field in electromagnetic railgun[J].Journal of Gun Launch & Control, 2012(4):9-12. doi: 10.3969/j.issn.1673-6524.2012.04.003
    [13] 胡汉平.热传导理论[M].合肥:中国科学技术大学出版社, 2010:1-2.

    HU H P.Heat conduction theory[M].Hefei:Press of University of Science and Technology of China, 2010:1-2.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  7017
  • HTML全文浏览量:  2501
  • PDF下载量:  98
出版历程
  • 收稿日期:  2015-08-19
  • 修回日期:  2015-10-22

目录

    /

    返回文章
    返回