三元铁基金属氮化物的高压复分解反应合成

高上攀 雷力 胡启威 房雷鸣 王贤龙 大藤弘明 小岛洋平 张雷雷 谭立洁 曾雉 彭放 贺端威 入舩徹男

高上攀, 雷力, 胡启威, 房雷鸣, 王贤龙, 大藤弘明, 小岛洋平, 张雷雷, 谭立洁, 曾雉, 彭放, 贺端威, 入舩徹男. 三元铁基金属氮化物的高压复分解反应合成[J]. 高压物理学报, 2016, 30(4): 265-270. doi: 10.11858/gywlxb.2016.04.001
引用本文: 高上攀, 雷力, 胡启威, 房雷鸣, 王贤龙, 大藤弘明, 小岛洋平, 张雷雷, 谭立洁, 曾雉, 彭放, 贺端威, 入舩徹男. 三元铁基金属氮化物的高压复分解反应合成[J]. 高压物理学报, 2016, 30(4): 265-270. doi: 10.11858/gywlxb.2016.04.001
GAO Shang-Pan, LEI Li, HU Qi-Wei, FANG Lei-Ming, WANG Xian-Long, OHFUJI Hiroaki, KOJIMA Yohei, ZHANG Lei-Lei, TAN Li-Jie, ZENG Zhi, PENG Fang, HE Duan-Wei, IRIFUNE Tetsuo. High-Pressure Solid-State Metathesis Synthesis ofTernary Iron-Based Metal Nitrides[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265-270. doi: 10.11858/gywlxb.2016.04.001
Citation: GAO Shang-Pan, LEI Li, HU Qi-Wei, FANG Lei-Ming, WANG Xian-Long, OHFUJI Hiroaki, KOJIMA Yohei, ZHANG Lei-Lei, TAN Li-Jie, ZENG Zhi, PENG Fang, HE Duan-Wei, IRIFUNE Tetsuo. High-Pressure Solid-State Metathesis Synthesis ofTernary Iron-Based Metal Nitrides[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 265-270. doi: 10.11858/gywlxb.2016.04.001

三元铁基金属氮化物的高压复分解反应合成

doi: 10.11858/gywlxb.2016.04.001
基金项目: 

国家自然科学基金 21301122

高等学校博士学科点专项科研基金 20130181120116

详细信息
    作者简介:

    高上攀 (1989—), 男,硕士研究生,主要从事新型功能材料的高压合成与应用研究.E-mail:gaospan@163.com

    通讯作者:

    雷力 (1980—), 男,博士,副教授,硕士生导师,主要从事高压物理化学和极端条件光散射谱学研究.E-mail:lei@scu.edu.cn

  • 中图分类号: O521.2

High-Pressure Solid-State Metathesis Synthesis ofTernary Iron-Based Metal Nitrides

  • 摘要: 以二元金属氧化物(氧化铁、氧化钴、氧化镍)和六方氮化硼为反应前驱体,在大腔体压机提供的高温高压条件下(5GPa、1673K),通过发生复合高压固相复分解(HPSSM)反应合成组分可调控的三元铁基金属氮化物圆球状块体材料ε-Fe3-xMxN1+δ(M=Co, Ni)。并利用X射线粉末衍射(XPD)、场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HRTEM)等多种材料表征手段对高压合成的三元铁基金属氮化物进行结构表征, 同时基于密度泛函理论(DFT)的第一性原理计算探究压力对HPSSM反应的影响。研究结果表明,高压密闭环境有利于制备高质量金属氮化物,HPSSM反应合成法是制备铁基金属氮化物块体材料的一种有效方法。

     

  • 图  (a) 高压实验前样品组装; (b)高压实验后样品组装; (c)高压回收样品腔; (d)一系列三元铁基金属氮化物

    Figure  1.  Cell assembly for high pressure experiments (a)before reaction, and (b)after reaction; (c)A high-pressurecell recovered from high-pressure experiment; (d)A series of as-synthesized iron-based nitrides

    2a  铁基金属氮化物的XPD

    2a.  XPD patterns of the iron-based metal nitrides

    2b  ε-Fe3-xCoxN1+δ的XPD

    2b.  (b) XPD patterns of ε-Fe3-xCoxN1+δ

    图  ε-Fe3-xCoxN1+δ的晶格参数随Co含量x的变化

    Figure  3.  Crystal structure data of ε-Fe3-xCoxN1+δ varying with Co content x

    图  ε-Fe2.67Co0.33N0.99的(a)FE-SEM图, (b)SEM-FIB图, (c)HRTEM图, (d)SAED图

    Figure  4.  (a)FE-SEM image, (b)SEM-FIB image, (c)HRTEM image and (d)SAED patternof ε-Fe2.67Co0.33N0.99

    图  用DFT计算(3)式的化学反应焓随压力的变化关系

    Figure  5.  Pressure dependence of the calculated enthalpy of reaction Eq.(3) using DFT

    图  常压高温(1473K)下隔绝空气的对比实验产物的XPD分析

    Figure  6.  XPD pattern of the reaction product of Fe2O3 and hBNat 1 473K and under atmospheric pressure isolated from air

    表  1  P6322空间群构型的铁基金属氮化物精修晶格参数

    Table  1.   Crystal structure data of iron-based metal nitrides for refinements in space group P6322

    Iron-based nitrides a/(nm) c/(nm) V/(nm3)
    ε-Fe3N1.27 0.47413(5) 0.43993(5) 0.085645(34)
    ε-Fe2.67Co0.33N0.99 0.47132(3) 0.43862(7) 0.084380(34)
    ε-Fe2.32Co0.68N0.98 0.46824(9) 0.43705(14) 0.082988(74)
    ε-Fe2.67Ni0.33N0.86 0.47004(4) 0.43846(5) 0.083893(29)
    ε-Fe2.29Ni0.71N0.79 0.47380(4) 0.43853(6) 0.085257(34)
    下载: 导出CSV
  • [1] GRABKE H J.The role of nitrogen in the corrosion of iron and steels[J].ISIJ Int, 1996, 36(7):777-786. doi: 10.2355/isijinternational.36.777
    [2] WANG X, ZHENG W T, TIAN H W, et al.Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering[J].Appl Surf Sci, 2003, 220(1):30-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fee3eab003be0e1f53d2b115a566f564
    [3] MORISAKO A, MATSUMOTO M, NAOE M.Magnetic anisotropy and soft magnetism of iron nitride thin films prepared by facing-target sputtering[J].J Appl Phys, 1991, 69(8):5619-5621. doi: 10.1063/1.347941
    [4] NAGAKURA S, TANEHASHI K.Electronic structure of iron nitrides studied by electron diffraction.Ⅱ.ε-Fe2N and ζ-Fe2N[J].J Phys Soc Jpn, 1968, 25(3):840-846. doi: 10.1143/JPSJ.25.840
    [5] PANDA R N, GAJBHIYE N S.Magnetic properties of single domain ε-Fe3N synthesized by borohydride reduction route[J].J Appl Phys, 1997, 81(1):335-339. doi: 10.1063/1.364115
    [6] ATIQ S, KO H, SIDDIQI S A, et al.Effect of epitaxy and lattice mismatch on saturation magnetization of γ'-Fe4N thin films[J].Appl Phys Lett, 2008, 92(22):222-507.
    [7] DIRBA I, KOMISSINSKIY P, GUTFLEISCH O, et al.Increased magnetic moment induced by lattice expansion from α-Fe to α'-Fe8N[J].J Appl Phys, 2015, 117(17):173-911. doi: 10.1063/1.4919601
    [8] SIFKOVITS M, SMOLINSKI H, HELLWIG S, et al.Interplay of chemical bonding and magnetism in Fe4N, Fe3N and ζ-Fe2N[J].J Magn Magn Mater, 1999, 204(3):191-198. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027170675/
    [9] LEINEWEBER A, JACOBS H, HÜNING F, et al.ε-Fe3N:magnetic structure, magnetization and temperature dependent disorder of nitrogen[J].J Alloy Compd, 1999, 288(1/2):79-87. http://d.old.wanfangdata.com.cn/Periodical/gncl201004014
    [10] PANDA R N, GAJBHIYE N S.Magnetic properties of nanocrystalline γ'-Fe4N and ε-Fe3N synthesized by citrate route[J].IEEE T Magn, 1998, 34(2):542-548. doi: 10.1109/20.661488
    [11] MILAD I K, SMITH K J, WONG P C, et al.A comparison of bulk metal nitride catalysts for pyridine hydrodenitrogenation[J].Catal Lett, 1998, 52(1):113-119. doi: 10.1023/A%3A1019071420213
    [12] GUO K, RAU D, TOFFOLETTI L, et al.Ternary metastable nitrides ε-Fe2TMN (TM=Co, Ni):high-pressure, high-temperature synthesis, crystal structure, thermal stability, and magnetic properties[J].Chem Mater, 2012, 24(23):4600-4606. doi: 10.1021/cm3031297
    [13] LEI L, YIN W, JIANG X, et al.Synthetic route to metal nitrides:high-pressure solid-state metathesis reaction[J].Inorg Chem, 2013, 52(23):13356-13362. doi: 10.1021/ic4014834
    [14] YIN W, LEI L, JIANG X, et al.High pressure synthesis and properties studies on spherical bulk ε-Fe3N[J].High Pressure Res, 2014, 34(3):317-326. doi: 10.1080/08957959.2014.944910
    [15] KOJIMA Y, OHFUJI H.Structure and stability of carbon nitride under high pressure and high temperature up to 125GPa and 3 000K[J].Diam Relat Mater, 2013, 39:1-7. doi: 10.1016/j.diamond.2013.07.006
    [16] OHFUJI H, YAMAMOTO M.EDS quantification of light elements using osmium surface coating[J].J Miner Petrol Sci, 2015, 110(4):189-195. doi: 10.2465/jmps.141126
    [17] HOHENBERG P, KOHN W.Inhomogeneous electron gas[J].Phys Rev B, 1964, 136(3):864-871. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225733276/
    [18] KOHN W, SHAM L J.Quantum density oscillations in an inhomogeneous electron gas[J].Phys Rev A, 1965, 137(3):1697-1705. doi: 10.1103-PhysRev.137.A1697/
    [19] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [20] GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso:a modular and open-source software project for quantum simulations of materials[J].J Phys Condens Mat, 2009, 21(39):395-502. doi: 10.1088-0953-8984-21-39-395502/
    [21] GOTOU H, YAGI T, LIZUKA R, et al.Application of X-ray radiography to study the segregation process of iron from silicate under high pressure and high temperature[J].High Pressure Res, 2015, 35(2):130-138. doi: 10.1080/08957959.2015.1028932
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7724
  • HTML全文浏览量:  2569
  • PDF下载量:  191
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-03-30

目录

    /

    返回文章
    返回