电磁轨道炮滑动电接触的热效应

巩飞 翁春生

巩飞, 翁春生. 电磁轨道炮滑动电接触的热效应[J]. 高压物理学报, 2014, 28(1): 91-96. doi: 10.11858/gywlxb.2014.01.015
引用本文: 巩飞, 翁春生. 电磁轨道炮滑动电接触的热效应[J]. 高压物理学报, 2014, 28(1): 91-96. doi: 10.11858/gywlxb.2014.01.015
GONG Fei, WENG Chun-Sheng. Thermal Effect of Sliding Electrical Contact in Electromagnetic Railgun[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 91-96. doi: 10.11858/gywlxb.2014.01.015
Citation: GONG Fei, WENG Chun-Sheng. Thermal Effect of Sliding Electrical Contact in Electromagnetic Railgun[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 91-96. doi: 10.11858/gywlxb.2014.01.015

电磁轨道炮滑动电接触的热效应

doi: 10.11858/gywlxb.2014.01.015
基金项目: 高等学校博士学科点专项科研基金(20093219110037)
详细信息
    作者简介:

    巩飞(1982-), 男, 博士研究生, 主要从事电磁发射技术研究.E-mail:gongfei0099@126.com

    通讯作者:

    翁春生(1964-), 男, 博士, 教授, 主要从事发射技术研究.E-mail: wengcs@126.com

  • 中图分类号: O442; TJ012

Thermal Effect of Sliding Electrical Contact in Electromagnetic Railgun

  • 摘要: 为了更准确地反映滑动电接触面的温升过程,建立了电磁轨道炮高速滑动条件下非理想电接触的计算模型,采用有限差分法,对接触电阻热效应进行了计算。计算结果表明:非理想电接触的表面温升明显高于理想接触,接触电阻层的厚度越大,电接触面的温升越快;由于速度趋肤效应的影响,接触电阻热的作用范围主要集中在接触面尾部区域;材料的热导率及输入电流的波形均对接触面温度峰值有重要的影响。研究结果为预测接触表面的材料状态,进而预测接触转捩的发生提供了理论依据。

     

  • 图  轨道炮的二维几何结构

    Figure  1.  Two-dimension geometry of the railgun

    图  电接触示意图

    Figure  2.  Schematic diagram of the electrical contact

    图  输入电流曲线

    Figure  3.  Input current curve

    图  电导率随温度变化的曲线

    Figure  4.  Electrical conductivity versus temperature

    图  电接触面的温度峰值变化曲线

    Figure  5.  Maximum temperature on the electrical contact interface versus time

    图  1.0 ms时电接触表面温度沿x方向的变化曲线

    Figure  6.  Variation of temperature on the electrical contact interface along x direction at 1.0 ms

    图  1.0 ms时电枢温度分布图

    Figure  7.  Temperature distribution in armature at 1.0 ms

    图  不同热导率条件下电接触面的温度峰值曲线

    Figure  8.  Variation of maximum temperature on the electrical contact interface for different thermal conductivities

    图  具有不同λ的输入电流波形

    Figure  9.  Shape of input current with different λ

    图  10  不同λ条件下电接触面的温度峰值曲线

    Figure  10.  Variation of maximum temperature on the electrical contact interface for different λ

  • [1] Stefani F, Levinson S, Satapathy S, et al. Electrodynamic transition in solid armature railguns[J]. IEEE Trans Magn, 2001, 37(1): 101-105. doi: 10.1109/20.911800
    [2] Rogeon P, Dechalotte F, Raoelison R, et al. A microscopic approach to determine electrothermal contact conditions during resistance spot welding process[J]. J Heat Transf, 2008, 131(2): 022101.
    [3] Chen W W, Kim W, Wang Q J. Transient thermomechanical analysis of sliding electrical contacts of elastoplastic bodies, thermal softening, and melting inception[J]. J Tribology, 2009, 131(2): 021406. doi: 10.1115/1.3084214
    [4] Yovanovich M M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. IEEE Trans Compon Packag Technol, 2005, 28(2): 182-206. doi: 10.1109/TCAPT.2005.848483
    [5] Bansal D G, Streator J L. Behavior of copper-aluminum tribological pair under high current densities[J]. IEEE Trans Magn, 2009, 45(1): 244-249. doi: 10.1109/TMAG.2008.2008684
    [6] Kim B K, Hsieh K T, Bostick F X. A three-dimensional finite element model for thermal effect of imperfect electric contacts[J]. IEEE Trans Magn, 1999, 35(1): 170-174. doi: 10.1109/20.738397
    [7] Coffo M, Gallant J. Simulation of the current distribution and the heat load of a brush projectile in a railgun with the finite element code ANSYS[J]. Acta Physica Polonica Ser A, 2009, 115(6): 1112-1114. doi: 10.12693/APhysPolA.115.1112
    [8] Hsieh K T, Satapathy S, Hsieh M T. Effects of pressure-dependent contact resistivity on contact interfacial conditions[J]. IEEE Trans Magn, 2009, 45(1): 313-318. doi: 10.1109/TMAG.2008.2008876
    [9] Xia S, He J, Chen L, et al. Studies on interference fit between armature and rails in railguns[J]. IEEE Trans Plasma Sci, 2011, 39(1): 186-191. doi: 10.1109/TPS.2010.2057452
    [10] 李昕, 翁春生.块状固体电枢非稳态电磁效应的三维数值模拟[J].弹道学报, 2009, 21(1): 103-106.

    Li X, Weng C S. Three-dimensional numerical simulation of unsteady electromagnetic effect in block solid armature[J]. Journal of Ballistics, 2009, 21(1): 103-106. (in Chinese)
    [11] 陶青青, 吕庆敖, 李鹤, 等.轨道推进器瞬态电磁场有限元分析[J].火炮发射与控制学报, 2011(1): 54-56.

    Tao Q Q, Lü Q A, Li H, et al. Finite element analysis of electromagnetic rail launchers[J]. Journal of Gun Launch & Control, 2011(1): 54-56. (in Chinese)
    [12] 李强, 范长增, 贾元智, 等.电磁轨道炮导轨和电枢中的焦耳热分析[J].弹道学报, 2006, 18(4): 38-40.

    Li Q, Fan C Z, Jia Y Z, et al. Rail and armature joule heating of an electromagnetic rail gun[J]. Journal of Ballistics, 2006, 18(4): 38-40. (in Chinese)
    [13] Yu X, Fan Z. Simulation and two-objective optimization of the electromagnetic-railgun model considering VSEC resistance and contact resistance[J]. IEEE Trans Plasma Sci, 2011, 39(1): 405-410. doi: 10.1109/TPS.2010.2052636
    [14] Powell J D, Zielinski A E. Ohmic heating in a double-taper sabot-armature[J]. IEEE Trans Magn, 2003, 39(1): 153-157. doi: 10.1109/TMAG.2002.805964
  • 加载中
图(10)
计量
  • 文章访问数:  7514
  • HTML全文浏览量:  2259
  • PDF下载量:  343
出版历程
  • 收稿日期:  2012-04-26
  • 修回日期:  2012-07-17

目录

    /

    返回文章
    返回