金高压物态方程的第一原理研究

张其黎 赵艳红 马桂存

张其黎, 赵艳红, 马桂存. 金高压物态方程的第一原理研究[J]. 高压物理学报, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003
引用本文: 张其黎, 赵艳红, 马桂存. 金高压物态方程的第一原理研究[J]. 高压物理学报, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003
ZHANG Qi-Li, ZHAO Yan-Hong, MA Gui-Cun. First-Principle Study of High Pressure Equation of State for Au[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003
Citation: ZHANG Qi-Li, ZHAO Yan-Hong, MA Gui-Cun. First-Principle Study of High Pressure Equation of State for Au[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003

金高压物态方程的第一原理研究

doi: 10.11858/gywlxb.2014.01.003
基金项目: 中国工程物理研究院科学技术基金(2010B0102016)
详细信息
    作者简介:

    张其黎(1972-), 男, 博士, 副研究员, 主要从事材料状态方程研究.E-mail:zhang_qili@iapcm.ac.cn

  • 中图分类号: O521.22

First-Principle Study of High Pressure Equation of State for Au

  • 摘要: 基于密度泛函理论的第一原理方法,研究了金的物态方程。基态计算结果表明,采用局域密度近似(LDA)形式的势函数能更准确地反应金材料中电子-电子之间的交换关联作用。利用第一原理分子动力学方法,计算了密度为19.3~42.0 g/cm3、温度在1 000~50 000 K区间的金的物态方程,在此基础上计算了冲击雨贡纽点,并与实验数据及已有的理论曲线进行比较,理论计算结果与实验结果符合得较好。

     

  • 图  fcc结构金的总能量-体积关系

    Figure  1.  Calculated total energy as a function of volume for fcc Au

    图  采用LDA计算得到的冷压与密度的关系

    Figure  2.  Calculated cold pressure as a function of density using LDA

    图  金的Hugoniot曲线

    Figure  3.  Hugoniot curves of Au

    表  1  不同交换关联势得到的平衡体积、体弹模量及体弹模量导数

    Table  1.   The equilibrium volume, bulk modulus and its derivative for various exchange-correlation potentials

    Method V0/(nm3) B0/(GPa) B0
    LDA 0.016 924 166.8 5.252
    PBE 0.018 439 126.3 4.911
    GGA 0.018 477 127.9 4.892
    Exp.[20] 0.016 96 167.0 5.500
    下载: 导出CSV
  • [1] McQueen R G, Marsh S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars[J]. J Appl Phys, 1960, 31(7): 1253-1269. doi: 10.1063/1.1735815
    [2] Al'tshuler L V, Krupnikov K K, Ledeneo B N, et al. Dynamic compressibility and equation of state of iron under high pressure[J]. Sov Phys JETP, 1958, 34(7): 606-614.
    [3] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressures of up to 580 GPa[J]. Appl Phys Lett, 2008, 92(5): 051901. doi: 10.1063/1.2840189
    [4] Koenig M, Faral B, Boudenne J M, et al. Relative consistency of equations of state by laser driven shock waves[J]. Phys Rev Lett, 1995, 74(12): 2260-2263. doi: 10.1103/PhysRevLett.74.2260
    [5] Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 10 TPa[J]. Phys Rev B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287
    [6] Rothman S D, Evans A M, Horsfield C J, et al. Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks[J]. Phys Plasmas, 2002, 9(5): 1721-1733. doi: 10.1063/1.1465419
    [7] Pant H C, Shukla M, Senecha V K, et al. Laser driven shock wave experiments for equation of state studies at megabar pressures[J]. J Phys Condens Matter, 2002, 14(44): 10787-10791. doi: 10.1088/0953-8984/14/44/378
    [8] Shu H, Fu S Z, Huang X G, et al. Laser-driven shock wave stability in Al through Au and determination of the TPa hugoniot point in Au[J]. J Appl Phys, 2008, 103(9): 093304. doi: 10.1063/1.2838164
    [9] More R M, Warren K H, Young D A, et al. A new quotidian equation of state(QEOS)for hot dense matter[J]. Phys Fluids, 1988, 31(10): 3059-3078. doi: 10.1063/1.866963
    [10] 马桂存, 裴文兵, 王敏.金的QEOS理论物态方程[C]//ICF科技年报, 2005: 272.

    Ma G C, Pei W B, Wang M. The QEOS theoretical equation of state of gold[C]//ICF Science and Technology Annals, 2005: 272. (in Chinese)
    [11] Matsui M. High temperature and high pressure equation of state of gold[J]. J Phys Conf Ser, 2010, 215(1): 012197.
    [12] 侯永, 袁建民.第一性原理对金的高压相变和零温物态方程的计算[J].物理学报, 2007, 56(6): 3458-3463.

    Hou Y, Yuan J M. First-principle calculations of phase transitions and equation of state at T=0 K for gold[J]. Acta Physica Sinica, 2007, 56(6): 3458-3463. (in Chinese)
    [13] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [14] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
    [15] Hedin L, Lundqvist B I. Explicit local exchange-correlation potentials[J]. J Phys C Solid State Phys, 1971, 4(14): 2064-2083. doi: 10.1088/0022-3719/4/14/022
    [16] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46(11): 6671-6687. doi: 10.1103/PhysRevB.46.6671
    [17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [18] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proc Natl Acad Sci USA, 1944, 30(9): 244-247. doi: 10.1073/pnas.30.9.244
    [19] Takemura K, Dewaele A. Isothermal equation of state for gold with a He-pressure medium[J]. Phys Rev B, 2008, 78(10): 104119. doi: 10.1103/PhysRevB.78.104119
    [20] Heinz D L, Jeanloz R. The equation of state of the gold calibration standard[J]. J Appl Phys, 1984, 55(4): 885-893. doi: 10.1063/1.333139
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  7208
  • HTML全文浏览量:  2019
  • PDF下载量:  336
出版历程
  • 收稿日期:  2012-07-08
  • 修回日期:  2012-09-12

目录

    /

    返回文章
    返回