Volume 39 Issue 12
Dec 2025
Turn off MathJax
Article Contents
LIU Boyu, LIU Jingyi, ZHUANG Yukai, WANG Qiming, ZHANG Youjun. Investigation of Mechanical Behavior in Nanocrystalline Palladium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 121101. doi: 10.11858/gywlxb.20251133
Citation: LIU Boyu, LIU Jingyi, ZHUANG Yukai, WANG Qiming, ZHANG Youjun. Investigation of Mechanical Behavior in Nanocrystalline Palladium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 121101. doi: 10.11858/gywlxb.20251133

Investigation of Mechanical Behavior in Nanocrystalline Palladium under High Pressure

doi: 10.11858/gywlxb.20251133
  • Received Date: 17 Jul 2025
  • Rev Recd Date: 15 Sep 2025
  • Available Online: 17 Sep 2025
  • Issue Publish Date: 05 Dec 2025
  • The investigation of mechanical response characteristics of nanocrystalline metallic materials under extreme high-pressure conditions possesses significant scientific importance and engineering value. Using a diamond anvil cell combined with synchrotron radiation X-ray diffraction techniques, the mechanical behavior of palladium (Pd) with an average grain size of approximately 10 nm under static high pressure was studied. Within the investigated pressure range (0−111 GPa), the crystal structure of palladium remained stable. Analysis of diffraction peak positions and full width at half maximum (FWHM) at each pressure point enables determination of unit cell volume, grain size, and microscopic strain under high-pressure conditions. Fitting with the third-order Birch-Murnaghan equation yields bulk modulus of 288 GPa (hydrostatic) and 290 GPa (non-hydrostatic), and the yield strength is approximately 20 GPa. In addition, by integrating existing literatures, this study systematically explored the influence of size effects on mechanical properties. The yield strength of Pd progressively increases with decreasing grain size, exhibiting a 300% enhancement compared to Pd nanofibers. These findings provide crucial data for the structural design and application of nanocrystalline Pd under extreme conditions.

     

  • loading
  • [1]
    魏志刚, 胡时胜, 李永池, 等. 预扭转钨合金动能弹提高穿甲侵彻威力机理分析 [J]. 兵工学报, 1998, 19(2): 103–107.

    WEI Z G, HU S S, LI Y C, et al. Penetration mechanism of pre-torqued tungsten heavy alloy projectiles [J]. Acta Armamentarii, 1998, 19(2): 103–107.
    [2]
    ESWARAPPA PRAMEELA S, POLLOCK T M, RAABE D, et al. Materials for extreme environments [J]. Nature Reviews Materials, 2023, 8(2): 81–88. doi: 10.1038/s41578-022-00496-z
    [3]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Correction: ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6925): 806. doi: 10.1038/421806b
    [4]
    XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004
    [5]
    MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [6]
    MAO H K, DING Y, XIAO Y M, et al. Electronic dynamics and plasmons of sodium under compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20434–20437. doi: 10.1073/pnas.1116930108
    [7]
    DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [8]
    LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [9]
    BATY S R, BURAKOVSKY L, LUSCHER D J, et al. Palladium at high pressure and high temperature: a combined experimental and theoretical study [J]. Journal of Applied Physics, 2024, 135(7): 075103. doi: 10.1063/5.0179469
    [10]
    ERRANDONEA D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt [J]. Physical Review B, 2013, 87(5): 054108. doi: 10.1103/PhysRevB.87.054108
    [11]
    JEONG J W, CHANG K J. Molecular-dynamics simulations for the shock Hugoniot meltings of Cu, Pd and Pt [J]. Journal of Physics: Condensed Matter, 1999, 11(19): 3799–3806. doi: 10.1088/0953-8984/11/19/302
    [12]
    MEYER J D, STRITZKER B. Superconductivity in simple cubic Te-Au alloys produced by ion irradiation [J]. Zeitschrift für Physik B: Condensed Matter, 1979, 36: 47–56. doi: 10.1007/BF01333953
    [13]
    KÖNIG R, SCHINDLER A, HERRMANNSDÖRFER T. Superconductivity of compacted platinum powder at very low temperatures [J]. Physical Review Letters, 1999, 82(22): 4528–4531. doi: 10.1103/PhysRevLett.82.4528
    [14]
    LIU Z L, YANG J H, CAI L C, et al. Structural and thermodynamic properties of compressed palladium: ab initio and molecular dynamics study [J]. Physical Review B, 2011, 83(14): 144113. doi: 10.1103/PhysRevB.83.144113
    [15]
    刘泽涛, 陈博, 令伟栋, 等. 冲击压缩下金属钯的结构相变 [J]. 物理学报, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511

    LIU Z T, CHEN B, LING W D, et al. Phase transitions of palladium under dynamic shock compression [J]. Acta Physica Sinica, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
    [16]
    MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
    [17]
    CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. doi: 10.1080/09506608.2016.1191808
    [18]
    NAIK S N, WALLEY S M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals [J]. Journal of Materials Science, 2020, 55(7): 2661–2681. doi: 10.1007/s10853-019-04160-w
    [19]
    CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022
    [20]
    WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A
    [21]
    MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003
    [22]
    SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X
    [23]
    周晓玲, 王潘. 高压力学方法及研究进展 [J]. 高压物理学报, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715

    ZHOU X L, WANG P. Methods and research progress in high pressure mechanics [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
    [24]
    MUSTAPHA S, NDAMITSO M M, ABDULKAREEM A S, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles [J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10(4): 045013. doi: 10.1088/2043-6254/ab52f7
    [25]
    HAMMERSLEY A P, SVENSSON S O, HANFLANDM, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248. doi: 10.1080/08957959608201408
    [26]
    SINGH T B, REY L, GARTIA R K. Applications of PeakFit software in thermoluminescence studies [J]. Indian Journal of Pure & Applied Physics, 2011, 49(5): 297–302.
    [27]
    余建新, 王晓鹏, 崔喜平. 高温环境下材料泊松比测试方法研究 [J]. 实验科学与技术, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474

    YU J X, WANG X P, CUI X P. Material Poisson’s ratio measurement method at elevated temperatures [J]. Experiment Science and Technology, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474
    [28]
    SMITHELLS C J. Elasticproperties, damping capacity and shape memory alloys [M]//GALE W F, TOTEMEIERT C. Smithells Metals Reference Book. Oxford: Butterworth-Heinemann, 2004: 15-1–15-45.
    [29]
    AGOSTA D S, LEISURE R G, FOSTER K, et al. Elastic moduli and internal friction of nanocrystalline Pd and PdSi as a function of temperature [J]. Philosophical Magazine, 2008, 88(6): 949–958. doi: 10.1080/14786430802014662
    [30]
    FEDOTENKO T, DUBROVINSKY L, KHANDARKHAEVA S, et al. Synthesis of palladium carbides and palladium hydride in laser heated diamond anvil cells [J]. Journal of Alloys and Compounds, 2020, 844: 156179. doi: 10.1016/j.jallcom.2020.156179
    [31]
    GUIGUE B, GENESTE G, LERIDON B, et al. An X-ray study of palladium hydrides up to 100 GPa: synthesis and isotopic effects [J]. Journal of Applied Physics, 2020, 127(7): 075901. doi: 10.1063/1.5138697
    [32]
    FROST M, SMITH D, MCBRIDE E E, et al. The equations of state of statically compressed palladium and rhodium [J]. Journal of Applied Physics, 2023, 134(3): 035901. doi: 10.1063/5.0161038
    [33]
    CHEN L Y. Deformation mechanisms in Pd nanowhiskers [D]. Philadelphia: University of Pennsylvania, 2014.
    [34]
    RAJU S, MOHANDAS E, RAGHUNATHAN V S. The pressure derivative of bulk modulus of transition metals: an estimation using the method of model potentials and a study of the systematics [J]. Journal of Physics and Chemistry of Solids, 1997, 58(9): 1367–1373. doi: 10.1016/S0022-3697(97)00024-3
    [35]
    SOLLIARD C, FLUELI M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum [J]. Surface Science, 1985, 156: 487–494. doi: 10.1016/0039-6028(85)90610-7
    [36]
    ZHANG J Z, ZHAO Y S, PALOSZ B. Comparative studies of compressibility between nanocrystalline and bulk nickel [J]. Applied Physics Letters, 2007, 90(4): 043112. doi: 10.1063/1.2435325
    [37]
    GU Q F, KRAUSS G, STEURER W, et al. Unexpected high stiffness of Ag and Au nanoparticles [J]. Physical Review Letters, 2008, 100(4): 045502. doi: 10.1103/PhysRevLett.100.045502
    [38]
    CHEN B, PENWELL D, KRUGER M B, et al. Nanocrystalline iron at high pressure [J]. Journal of Applied Physics, 2001, 89(9): 4794–4796. doi: 10.1063/1.1357780
    [39]
    HEMPEL J L, WELLS M D, PARKIN S, et al. Understanding the relationship between the crystal structure and elastic-plastic properties of 0-D organic-inorganic halide perovskites [J]. CrystEngComm, 2025, 27(34): 5743–5751. doi: 10.1039/D5CE00716J
    [40]
    SUN S J, FANG Y N, KIESLICH G, et al. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X=I, Br and Cl), by nanoindentation [J]. Journal of Materials Chemistry A, 2015, 3(36): 18450–18455. doi: 10.1039/C5TA03331D
    [41]
    KOU H B, GAO Y W, SHAO J X, et al. Temperature-porosity-dependent elastic modulus model for metallic materials [J]. Reviews on Advanced Materials Science, 2022, 61(1): 769–777. doi: 10.1515/rams-2022-0270
    [42]
    PALOSZ B, GIERLOTKA S, STEL’MAKH S, et al. High-pressure high-temperature in situ diffraction studies of nanocrystalline ceramic materials at HASYLAB [J]. Journal of Alloys and Compounds, 1999, 286(1/2): 184–194. doi: 10.1016/S0925-8388(98)01004-4
    [43]
    ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
    [44]
    SA B, YANG H L, MIAO N H, et al. Pressure-induced destabilization and anomalous lattice distortion in TcO2 [J]. Inorganic Chemistry, 2017, 56(16): 9973–9978. doi: 10.1021/acs.inorgchem.7b01481
    [45]
    IVANISENKO Y, KURMANAEVA L, WEISSMUELLER J, et al. Deformation mechanisms in nanocrystalline palladium at large strains [J]. Acta Materialia, 2009, 57(11): 3391–3401. doi: 10.1016/j.actamat.2009.03.049
    [46]
    VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
    [47]
    REYNARD B, CARACAS R, CARDON H, et al. High-pressure yield strength of rocksalt structures using quartz Raman piezometry [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 71–79. doi: 10.1016/j.crte.2018.02.001
    [48]
    WU X L, ZHU Y T, WEI Y G, et al. Strong strain hardening in nanocrystalline nickel [J]. Physical Review Letters, 2009, 103(20): 205504. doi: 10.1103/PhysRevLett.103.205504
    [49]
    SHAN Z W, WIEZOREK J M K, STACH E A, et al. Dislocation dynamics in nanocrystalline nickel [J]. Physical Review Letters, 2007, 98(9): 095502. doi: 10.1103/PhysRevLett.98.095502
    [50]
    CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727
    [51]
    YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(107) PDF downloads(13) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return