| Citation: | LIU Boyu, LIU Jingyi, ZHUANG Yukai, WANG Qiming, ZHANG Youjun. Investigation of Mechanical Behavior in Nanocrystalline Palladium under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 121101. doi: 10.11858/gywlxb.20251133 |
| [1] |
魏志刚, 胡时胜, 李永池, 等. 预扭转钨合金动能弹提高穿甲侵彻威力机理分析 [J]. 兵工学报, 1998, 19(2): 103–107.
WEI Z G, HU S S, LI Y C, et al. Penetration mechanism of pre-torqued tungsten heavy alloy projectiles [J]. Acta Armamentarii, 1998, 19(2): 103–107.
|
| [2] |
ESWARAPPA PRAMEELA S, POLLOCK T M, RAABE D, et al. Materials for extreme environments [J]. Nature Reviews Materials, 2023, 8(2): 81–88. doi: 10.1038/s41578-022-00496-z
|
| [3] |
IRIFUNE T, KURIO A, SAKAMOTO S, et al. Correction: ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6925): 806. doi: 10.1038/421806b
|
| [4] |
XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004
|
| [5] |
MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
|
| [6] |
MAO H K, DING Y, XIAO Y M, et al. Electronic dynamics and plasmons of sodium under compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20434–20437. doi: 10.1073/pnas.1116930108
|
| [7] |
DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
|
| [8] |
LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
|
| [9] |
BATY S R, BURAKOVSKY L, LUSCHER D J, et al. Palladium at high pressure and high temperature: a combined experimental and theoretical study [J]. Journal of Applied Physics, 2024, 135(7): 075103. doi: 10.1063/5.0179469
|
| [10] |
ERRANDONEA D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt [J]. Physical Review B, 2013, 87(5): 054108. doi: 10.1103/PhysRevB.87.054108
|
| [11] |
JEONG J W, CHANG K J. Molecular-dynamics simulations for the shock Hugoniot meltings of Cu, Pd and Pt [J]. Journal of Physics: Condensed Matter, 1999, 11(19): 3799–3806. doi: 10.1088/0953-8984/11/19/302
|
| [12] |
MEYER J D, STRITZKER B. Superconductivity in simple cubic Te-Au alloys produced by ion irradiation [J]. Zeitschrift für Physik B: Condensed Matter, 1979, 36: 47–56. doi: 10.1007/BF01333953
|
| [13] |
KÖNIG R, SCHINDLER A, HERRMANNSDÖRFER T. Superconductivity of compacted platinum powder at very low temperatures [J]. Physical Review Letters, 1999, 82(22): 4528–4531. doi: 10.1103/PhysRevLett.82.4528
|
| [14] |
LIU Z L, YANG J H, CAI L C, et al. Structural and thermodynamic properties of compressed palladium: ab initio and molecular dynamics study [J]. Physical Review B, 2011, 83(14): 144113. doi: 10.1103/PhysRevB.83.144113
|
| [15] |
刘泽涛, 陈博, 令伟栋, 等. 冲击压缩下金属钯的结构相变 [J]. 物理学报, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
LIU Z T, CHEN B, LING W D, et al. Phase transitions of palladium under dynamic shock compression [J]. Acta Physica Sinica, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
|
| [16] |
MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
|
| [17] |
CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. doi: 10.1080/09506608.2016.1191808
|
| [18] |
NAIK S N, WALLEY S M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals [J]. Journal of Materials Science, 2020, 55(7): 2661–2681. doi: 10.1007/s10853-019-04160-w
|
| [19] |
CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022
|
| [20] |
WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A
|
| [21] |
MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003
|
| [22] |
SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X
|
| [23] |
周晓玲, 王潘. 高压力学方法及研究进展 [J]. 高压物理学报, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
ZHOU X L, WANG P. Methods and research progress in high pressure mechanics [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
|
| [24] |
MUSTAPHA S, NDAMITSO M M, ABDULKAREEM A S, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles [J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10(4): 045013. doi: 10.1088/2043-6254/ab52f7
|
| [25] |
HAMMERSLEY A P, SVENSSON S O, HANFLANDM, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248. doi: 10.1080/08957959608201408
|
| [26] |
SINGH T B, REY L, GARTIA R K. Applications of PeakFit software in thermoluminescence studies [J]. Indian Journal of Pure & Applied Physics, 2011, 49(5): 297–302.
|
| [27] |
余建新, 王晓鹏, 崔喜平. 高温环境下材料泊松比测试方法研究 [J]. 实验科学与技术, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474
YU J X, WANG X P, CUI X P. Material Poisson’s ratio measurement method at elevated temperatures [J]. Experiment Science and Technology, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474
|
| [28] |
SMITHELLS C J. Elasticproperties, damping capacity and shape memory alloys [M]//GALE W F, TOTEMEIERT C. Smithells Metals Reference Book. Oxford: Butterworth-Heinemann, 2004: 15-1–15-45.
|
| [29] |
AGOSTA D S, LEISURE R G, FOSTER K, et al. Elastic moduli and internal friction of nanocrystalline Pd and PdSi as a function of temperature [J]. Philosophical Magazine, 2008, 88(6): 949–958. doi: 10.1080/14786430802014662
|
| [30] |
FEDOTENKO T, DUBROVINSKY L, KHANDARKHAEVA S, et al. Synthesis of palladium carbides and palladium hydride in laser heated diamond anvil cells [J]. Journal of Alloys and Compounds, 2020, 844: 156179. doi: 10.1016/j.jallcom.2020.156179
|
| [31] |
GUIGUE B, GENESTE G, LERIDON B, et al. An X-ray study of palladium hydrides up to 100 GPa: synthesis and isotopic effects [J]. Journal of Applied Physics, 2020, 127(7): 075901. doi: 10.1063/1.5138697
|
| [32] |
FROST M, SMITH D, MCBRIDE E E, et al. The equations of state of statically compressed palladium and rhodium [J]. Journal of Applied Physics, 2023, 134(3): 035901. doi: 10.1063/5.0161038
|
| [33] |
CHEN L Y. Deformation mechanisms in Pd nanowhiskers [D]. Philadelphia: University of Pennsylvania, 2014.
|
| [34] |
RAJU S, MOHANDAS E, RAGHUNATHAN V S. The pressure derivative of bulk modulus of transition metals: an estimation using the method of model potentials and a study of the systematics [J]. Journal of Physics and Chemistry of Solids, 1997, 58(9): 1367–1373. doi: 10.1016/S0022-3697(97)00024-3
|
| [35] |
SOLLIARD C, FLUELI M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum [J]. Surface Science, 1985, 156: 487–494. doi: 10.1016/0039-6028(85)90610-7
|
| [36] |
ZHANG J Z, ZHAO Y S, PALOSZ B. Comparative studies of compressibility between nanocrystalline and bulk nickel [J]. Applied Physics Letters, 2007, 90(4): 043112. doi: 10.1063/1.2435325
|
| [37] |
GU Q F, KRAUSS G, STEURER W, et al. Unexpected high stiffness of Ag and Au nanoparticles [J]. Physical Review Letters, 2008, 100(4): 045502. doi: 10.1103/PhysRevLett.100.045502
|
| [38] |
CHEN B, PENWELL D, KRUGER M B, et al. Nanocrystalline iron at high pressure [J]. Journal of Applied Physics, 2001, 89(9): 4794–4796. doi: 10.1063/1.1357780
|
| [39] |
HEMPEL J L, WELLS M D, PARKIN S, et al. Understanding the relationship between the crystal structure and elastic-plastic properties of 0-D organic-inorganic halide perovskites [J]. CrystEngComm, 2025, 27(34): 5743–5751. doi: 10.1039/D5CE00716J
|
| [40] |
SUN S J, FANG Y N, KIESLICH G, et al. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X=I, Br and Cl), by nanoindentation [J]. Journal of Materials Chemistry A, 2015, 3(36): 18450–18455. doi: 10.1039/C5TA03331D
|
| [41] |
KOU H B, GAO Y W, SHAO J X, et al. Temperature-porosity-dependent elastic modulus model for metallic materials [J]. Reviews on Advanced Materials Science, 2022, 61(1): 769–777. doi: 10.1515/rams-2022-0270
|
| [42] |
PALOSZ B, GIERLOTKA S, STEL’MAKH S, et al. High-pressure high-temperature in situ diffraction studies of nanocrystalline ceramic materials at HASYLAB [J]. Journal of Alloys and Compounds, 1999, 286(1/2): 184–194. doi: 10.1016/S0925-8388(98)01004-4
|
| [43] |
ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
|
| [44] |
SA B, YANG H L, MIAO N H, et al. Pressure-induced destabilization and anomalous lattice distortion in TcO2 [J]. Inorganic Chemistry, 2017, 56(16): 9973–9978. doi: 10.1021/acs.inorgchem.7b01481
|
| [45] |
IVANISENKO Y, KURMANAEVA L, WEISSMUELLER J, et al. Deformation mechanisms in nanocrystalline palladium at large strains [J]. Acta Materialia, 2009, 57(11): 3391–3401. doi: 10.1016/j.actamat.2009.03.049
|
| [46] |
VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040
|
| [47] |
REYNARD B, CARACAS R, CARDON H, et al. High-pressure yield strength of rocksalt structures using quartz Raman piezometry [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 71–79. doi: 10.1016/j.crte.2018.02.001
|
| [48] |
WU X L, ZHU Y T, WEI Y G, et al. Strong strain hardening in nanocrystalline nickel [J]. Physical Review Letters, 2009, 103(20): 205504. doi: 10.1103/PhysRevLett.103.205504
|
| [49] |
SHAN Z W, WIEZOREK J M K, STACH E A, et al. Dislocation dynamics in nanocrystalline nickel [J]. Physical Review Letters, 2007, 98(9): 095502. doi: 10.1103/PhysRevLett.98.095502
|
| [50] |
CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727
|
| [51] |
YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395
|