| Citation: | QI Yun, BAI Chenhao, DUAN Hongfei, DAI Lianpeng, LI Xuping, WANG Wei. Prediction Model and Application of Rock Burst Tendency in Deep High Stress Areas[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251103 |
| [1] |
LI P, CAI M F. Challenges and new insights for exploitation of deep underground metal mineral resources [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3478–3505. doi: 10.1016/S1003-6326(21)65744-8
|
| [2] |
江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治 [J]. 岩石力学与工程学报, 2019, 38(5): 956–972. doi: 10.13722/j.cnki.jrme.2018.1190
JIANG F F, ZHOU H, LIU C, et al. Progress, prediction and prevention of rockbursts in underground metal mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 956–972. doi: 10.13722/j.cnki.jrme.2018.1190
|
| [3] |
ZHANG J F, WANG Y H, SUN Y T, et al. Strength of ensemble learning in multiclass classification of rockburst intensity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(13): 1833–1853. doi: 10.1002/nag.3111
|
| [4] |
张镜剑, 傅冰骏. 岩爆及其判据和防治 [J]. 岩石力学与工程学报, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
ZHANG J J, FU B J. Rockburst and its criteria and control [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
|
| [5] |
汤志立, 徐千军. 基于9种机器学习算法的岩爆预测研究 [J]. 岩石力学与工程学报, 2020, 39(4): 773–781. doi: 10.13722/j.cnki.jrme.2019.0686
TANG Z L, XU Q J. Rockburst prediction based on nine machine learning algorithms [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 773–781. doi: 10.13722/j.cnki.jrme.2019.0686
|
| [6] |
刘慧敏, 徐方远, 刘宝举, 等. 基于CNN-LSTM的岩爆危险等级时序预测方法 [J]. 中南大学学报(自然科学版), 2021, 52(3): 659–670. doi: 10.11817/j.issn.1672-7207.2021.03.001
LIU H M, XU F Y, LIU B J, et al. Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM [J]. Journal of Central South University (Science and Technology), 2021, 52(3): 659–670. doi: 10.11817/j.issn.1672-7207.2021.03.001
|
| [7] |
刘剑, 周宗红, 刘军, 等. 基于主成分分析和改进Bayes判别的岩爆等级预测 [J]. 采矿与岩层控制工程学报, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004
LIU J, ZHOU Z H, LIU J, et al. Prediction of rockburst grade based on principal component analysis and improved Bayesian discriminant analysis [J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004
|
| [8] |
李康楠, 吴雅琴, 杜锋, 等. 基于卷积神经网络的岩爆烈度等级预测 [J]. 煤田地质与勘探, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018
LI K N, WU Y Q, DU F, et al. Prediction of rockburstintensity grade based on convolutional neural network [J]. Coal Geology & Exploration, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018
|
| [9] |
高梅, 张成良, 张华超, 等. 基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究 [J]. 工程地质学报, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112
GAO M, ZHANG C L, ZHANG H C, et al. Rockburst intensity level prediction based on SMOTEENN-CGAN-Stacking [J]. Journal of Engineering Geology, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112
|
| [10] |
满轲, 武立文, 刘晓丽, 等. 基于灰色关联分析和GRU模型的岩爆等级预测 [J]. 地下空间与工程学报, 2025, 21(2): 695–708, 719. doi: 10.20174/j.JUSE.2025.02.37
MAN K, WU L W, LIU X L, et al. Rockburst grade prediction based on grey correlation analysis and GRU model [J]. Chinese Journal of Underground Space and Engineering, 2025, 21(2): 695–708, 719. doi: 10.20174/j.JUSE.2025.02.37
|
| [11] |
祁云, 白晨浩, 代连朋, 等. 改进双向长短期记忆神经网络的瓦斯涌出量预测 [J]. 安全与环境学报, 2024, 24(12): 4630–4637. doi: 10.13637/j.issn.1009-6094.2024.0383
QI Y, BAI C H, DAI L P, et al. Enhanced Bi-directional long short-term memory neural network for gas emission forecasting [J]. Journal of Safety and Environment, 2024, 24(12): 4630–4637. doi: 10.13637/j.issn.1009-6094.2024.0383
|
| [12] |
CHAWLA N V, BOWYER K W, KEGELMEYER W P, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953
|
| [13] |
MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
| [14] |
BENTÉJAC C, CSÖRGŐ A, MARTÍNEZ-MUÑOZ G. A comparative analysis of gradient boosting algorithms [J]. Artificial Intelligence Review, 2021, 54(3): 1937–1967. doi: 10.1007/s10462-020-09896-5
|
| [15] |
JIANG H, HE Z, YE G, et al. Network intrusion detection based on PSO-XGBoost model [J]. IEEE Access, 2020, 8: 58392–58401. doi: 10.1109/ACCESS.2020.2982418
|
| [16] |
邱士利, 冯夏庭, 张传庆, 等. 深埋硬岩隧洞岩爆倾向性指标RVI的建立及验证 [J]. 岩石力学与工程学报, 2011, 30(6): 1126–1141.
QIU S L, FENG X T, ZHANG C Q, et al. Development and validation of rockburst vulnerability index (RVI) in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1126–1141.
|
| [17] |
宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据 [J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232
GONG F Q, YAN J Y, LI X B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232
|
| [18] |
张如九, 张延杰, 高仝, 等. 基于最大能量耗散率的岩爆倾向性指标研究 [J]. 岩石力学与工程学报, 2023, 42(12): 2993–3009. doi: 10.13722/j.cnki.jrme.2023.0363
ZHANG R J, ZHANG Y J, GAO T, et al. A novel index of rockburst proneness based on maximum energy dissipation rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(12): 2993–3009. doi: 10.13722/j.cnki.jrme.2023.0363
|
| [19] |
葛启发, 冯夏庭. 基于AdaBoost组合学习方法的岩爆分类预测研究 [J]. 岩土力学, 2008, 29(4): 943–948. doi: 10.3969/j.issn.1000-7598.2008.04.017
GE Q F, FENG X T. Classification and prediction of rockburst using AdaBoost combination learning method [J]. Rock and Soil Mechanics, 2008, 29(4): 943–948. doi: 10.3969/j.issn.1000-7598.2008.04.017
|
| [20] |
吴顺川, 张晨曦, 成子桥. 基于PCA-PNN原理的岩爆烈度分级预测方法 [J]. 煤炭学报, 2019, 44(9): 2767–2776. doi: 10.13225/j.cnki.jccs.2018.1519
WU S C, ZHANG C X, CHENG Z Q. Prediction of intensity classification of rockburst based on PCA-PNN principle [J]. Journal of China Coal Society, 2019, 44(9): 2767–2776. doi: 10.13225/j.cnki.jccs.2018.1519
|
| [21] |
邱道宏, 李术才, 张乐文, 等. 基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究 [J]. 应用基础与工程科学学报, 2015, 23(5): 981–991. doi: 10.16058/j.issn.1005-0930.2015.05.012
QIU D H, LI S C, ZHANG L W, et al. Research on QGA-SVM rock burst orientation classification based on model reliability examination [J]. Journal of Basic Science and Engineering, 2015, 23(5): 981–991. doi: 10.16058/j.issn.1005-0930.2015.05.012
|
| [22] |
周科平, 雷涛, 胡建华. 深部金属矿山RS-TOPSIS岩爆预测模型及其应用 [J]. 岩石力学与工程学报, 2013, 32(Suppl 2): 3705–3711.
ZHOU K P, LEI T, HU J H. RS-TOPSIS model of rockburst prediction in deep metal mines and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 2): 3705–3711.
|
| [23] |
王克忠, 谢添, 李梅, 等. 基于数值样本和随机森林分类器的岩爆风险快速预测代理模型 [J]. 清华大学学报(自然科学版), 2024, 64(7): 1203–1214. doi: 10.16511/j.cnki.qhdxxb.2024.26.027
WANG K Z, XIE T, LI M, et al. A surrogate model for the rapid prediction of rockburst risk based on numerical samples and random forest classifier [J]. Journal of Tsinghua University (Science and Technology), 2024, 64(7): 1203–1214. doi: 10.16511/j.cnki.qhdxxb.2024.26.027
|
| [24] |
吴菡. 基于支持向量机的岩爆预测方法研究 [D]. 林芝: 西藏农牧学院, 2023.
|
| [25] |
武立文. 基于SSA-RF模型的岩爆预测方法及应用研究 [D]. 北京: 北方工业大学, 2024.
WU L W. Research on rockburst prediction method and application based on SSA-RF model [D]. Beijing: North China University of Technology, 2024.
|