Turn off MathJax
Article Contents
QI Yun, BAI Chenhao, DUAN Hongfei, DAI Lianpeng, LI Xuping, WANG Wei. Prediction Model and Application of Rock Burst Tendency in Deep High Stress Areas[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251103
Citation: QI Yun, BAI Chenhao, DUAN Hongfei, DAI Lianpeng, LI Xuping, WANG Wei. Prediction Model and Application of Rock Burst Tendency in Deep High Stress Areas[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251103

Prediction Model and Application of Rock Burst Tendency in Deep High Stress Areas

doi: 10.11858/gywlxb.20251103
  • Received Date: 03 Jun 2025
  • Rev Recd Date: 08 Aug 2025
  • Available Online: 09 Aug 2025
  • To ensure the construction safety of geotechnical engineering in deep high stress areas, a combined rock burst intensity prediction model based on whale optimization algorithm (WOA) and extreme gradient boosting (XGBoost) is proposed to address the suddenness and complexity of rock burst. Firstly, the main controlling factors that affect the intensity level of rock burst are analyzed, and the uniaxial compressive strength, maximum tangential stress, uniaxial tensile strength, brittleness coefficient, stress coefficient, and elastic energy index are selected to establish a prediction index system for rock burst intensity level. The original samples are processed using the Pearson correlation coefficient, multiple imputation by chained equations (MICE), synthetic minority oversampling technique (SMOTE), and principal component analysis (PCA). Secondly, the maximum number of iterations, maximum depth of the tree, and learning rate of the XGBoost model were optimized through WOA, and the prediction results of the model were comprehensively evaluated using accuracy, precision, recall, F1 score, and Cohen Kappa coefficient. Finally, the model was applied to predict the rock burst intensity level of the Qinlingzhongnanshan highway tunnel and the water diversion system for hydropower stations. Results show that the WOA-optimized XGBoost model achieves optimal performance when the maximum number of iterations, maximum tree depth, and learning rate are 51, 13, and 0.7325, respectively. Prediction results for rock burst intensity level using the WOA-XGBoost model outperform those of other intelligent algorithm models, verifying the model’s high accuracy and reliability in predicting rock burst intensity level.

     

  • loading
  • [1]
    LI P, CAI M F. Challenges and new insights for exploitation of deep underground metal mineral resources [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3478–3505. doi: 10.1016/S1003-6326(21)65744-8
    [2]
    江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治 [J]. 岩石力学与工程学报, 2019, 38(5): 956–972. doi: 10.13722/j.cnki.jrme.2018.1190

    JIANG F F, ZHOU H, LIU C, et al. Progress, prediction and prevention of rockbursts in underground metal mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 956–972. doi: 10.13722/j.cnki.jrme.2018.1190
    [3]
    ZHANG J F, WANG Y H, SUN Y T, et al. Strength of ensemble learning in multiclass classification of rockburst intensity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(13): 1833–1853. doi: 10.1002/nag.3111
    [4]
    张镜剑, 傅冰骏. 岩爆及其判据和防治 [J]. 岩石力学与工程学报, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    ZHANG J J, FU B J. Rockburst and its criteria and control [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034–2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    [5]
    汤志立, 徐千军. 基于9种机器学习算法的岩爆预测研究 [J]. 岩石力学与工程学报, 2020, 39(4): 773–781. doi: 10.13722/j.cnki.jrme.2019.0686

    TANG Z L, XU Q J. Rockburst prediction based on nine machine learning algorithms [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 773–781. doi: 10.13722/j.cnki.jrme.2019.0686
    [6]
    刘慧敏, 徐方远, 刘宝举, 等. 基于CNN-LSTM的岩爆危险等级时序预测方法 [J]. 中南大学学报(自然科学版), 2021, 52(3): 659–670. doi: 10.11817/j.issn.1672-7207.2021.03.001

    LIU H M, XU F Y, LIU B J, et al. Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM [J]. Journal of Central South University (Science and Technology), 2021, 52(3): 659–670. doi: 10.11817/j.issn.1672-7207.2021.03.001
    [7]
    刘剑, 周宗红, 刘军, 等. 基于主成分分析和改进Bayes判别的岩爆等级预测 [J]. 采矿与岩层控制工程学报, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004

    LIU J, ZHOU Z H, LIU J, et al. Prediction of rockburst grade based on principal component analysis and improved Bayesian discriminant analysis [J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 053014. doi: 10.13532/j.jmsce.cn10-1638/td.2022.05.004
    [8]
    李康楠, 吴雅琴, 杜锋, 等. 基于卷积神经网络的岩爆烈度等级预测 [J]. 煤田地质与勘探, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018

    LI K N, WU Y Q, DU F, et al. Prediction of rockburstintensity grade based on convolutional neural network [J]. Coal Geology & Exploration, 2023, 51(10): 94–103. doi: 10.12363/issn.1001-1986.23.01.0018
    [9]
    高梅, 张成良, 张华超, 等. 基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究 [J]. 工程地质学报, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112

    GAO M, ZHANG C L, ZHANG H C, et al. Rockburst intensity level prediction based on SMOTEENN-CGAN-Stacking [J]. Journal of Engineering Geology, 2024, 32(6): 2264–2276. doi: 10.13544/j.cnki.jeg.2024-0112
    [10]
    满轲, 武立文, 刘晓丽, 等. 基于灰色关联分析和GRU模型的岩爆等级预测 [J]. 地下空间与工程学报, 2025, 21(2): 695–708, 719. doi: 10.20174/j.JUSE.2025.02.37

    MAN K, WU L W, LIU X L, et al. Rockburst grade prediction based on grey correlation analysis and GRU model [J]. Chinese Journal of Underground Space and Engineering, 2025, 21(2): 695–708, 719. doi: 10.20174/j.JUSE.2025.02.37
    [11]
    祁云, 白晨浩, 代连朋, 等. 改进双向长短期记忆神经网络的瓦斯涌出量预测 [J]. 安全与环境学报, 2024, 24(12): 4630–4637. doi: 10.13637/j.issn.1009-6094.2024.0383

    QI Y, BAI C H, DAI L P, et al. Enhanced Bi-directional long short-term memory neural network for gas emission forecasting [J]. Journal of Safety and Environment, 2024, 24(12): 4630–4637. doi: 10.13637/j.issn.1009-6094.2024.0383
    [12]
    CHAWLA N V, BOWYER K W, KEGELMEYER W P, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953
    [13]
    MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [14]
    BENTÉJAC C, CSÖRGŐ A, MARTÍNEZ-MUÑOZ G. A comparative analysis of gradient boosting algorithms [J]. Artificial Intelligence Review, 2021, 54(3): 1937–1967. doi: 10.1007/s10462-020-09896-5
    [15]
    JIANG H, HE Z, YE G, et al. Network intrusion detection based on PSO-XGBoost model [J]. IEEE Access, 2020, 8: 58392–58401. doi: 10.1109/ACCESS.2020.2982418
    [16]
    邱士利, 冯夏庭, 张传庆, 等. 深埋硬岩隧洞岩爆倾向性指标RVI的建立及验证 [J]. 岩石力学与工程学报, 2011, 30(6): 1126–1141.

    QIU S L, FENG X T, ZHANG C Q, et al. Development and validation of rockburst vulnerability index (RVI) in deep hard rock tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1126–1141.
    [17]
    宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据 [J]. 岩石力学与工程学报, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232

    GONG F Q, YAN J Y, LI X B. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993–2014. doi: 10.13722/j.cnki.jrme.2018.0232
    [18]
    张如九, 张延杰, 高仝, 等. 基于最大能量耗散率的岩爆倾向性指标研究 [J]. 岩石力学与工程学报, 2023, 42(12): 2993–3009. doi: 10.13722/j.cnki.jrme.2023.0363

    ZHANG R J, ZHANG Y J, GAO T, et al. A novel index of rockburst proneness based on maximum energy dissipation rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(12): 2993–3009. doi: 10.13722/j.cnki.jrme.2023.0363
    [19]
    葛启发, 冯夏庭. 基于AdaBoost组合学习方法的岩爆分类预测研究 [J]. 岩土力学, 2008, 29(4): 943–948. doi: 10.3969/j.issn.1000-7598.2008.04.017

    GE Q F, FENG X T. Classification and prediction of rockburst using AdaBoost combination learning method [J]. Rock and Soil Mechanics, 2008, 29(4): 943–948. doi: 10.3969/j.issn.1000-7598.2008.04.017
    [20]
    吴顺川, 张晨曦, 成子桥. 基于PCA-PNN原理的岩爆烈度分级预测方法 [J]. 煤炭学报, 2019, 44(9): 2767–2776. doi: 10.13225/j.cnki.jccs.2018.1519

    WU S C, ZHANG C X, CHENG Z Q. Prediction of intensity classification of rockburst based on PCA-PNN principle [J]. Journal of China Coal Society, 2019, 44(9): 2767–2776. doi: 10.13225/j.cnki.jccs.2018.1519
    [21]
    邱道宏, 李术才, 张乐文, 等. 基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究 [J]. 应用基础与工程科学学报, 2015, 23(5): 981–991. doi: 10.16058/j.issn.1005-0930.2015.05.012

    QIU D H, LI S C, ZHANG L W, et al. Research on QGA-SVM rock burst orientation classification based on model reliability examination [J]. Journal of Basic Science and Engineering, 2015, 23(5): 981–991. doi: 10.16058/j.issn.1005-0930.2015.05.012
    [22]
    周科平, 雷涛, 胡建华. 深部金属矿山RS-TOPSIS岩爆预测模型及其应用 [J]. 岩石力学与工程学报, 2013, 32(Suppl 2): 3705–3711.

    ZHOU K P, LEI T, HU J H. RS-TOPSIS model of rockburst prediction in deep metal mines and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 2): 3705–3711.
    [23]
    王克忠, 谢添, 李梅, 等. 基于数值样本和随机森林分类器的岩爆风险快速预测代理模型 [J]. 清华大学学报(自然科学版), 2024, 64(7): 1203–1214. doi: 10.16511/j.cnki.qhdxxb.2024.26.027

    WANG K Z, XIE T, LI M, et al. A surrogate model for the rapid prediction of rockburst risk based on numerical samples and random forest classifier [J]. Journal of Tsinghua University (Science and Technology), 2024, 64(7): 1203–1214. doi: 10.16511/j.cnki.qhdxxb.2024.26.027
    [24]
    吴菡. 基于支持向量机的岩爆预测方法研究 [D]. 林芝: 西藏农牧学院, 2023.
    [25]
    武立文. 基于SSA-RF模型的岩爆预测方法及应用研究 [D]. 北京: 北方工业大学, 2024.

    WU L W. Research on rockburst prediction method and application based on SSA-RF model [D]. Beijing: North China University of Technology, 2024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(9)

    Article Metrics

    Article views(352) PDF downloads(18) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return