| Citation: | LI Xiuyuan, PENG Zihuan, JIANG Chongwen, HUANG Zhihong, LI Nan. Theoretical Study on the Polymerization Mechanism of Hydrogen-Doped Carbon Monoxide under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 123102. doi: 10.11858/gywlxb.20251088 |
| [1] |
LEONHARDI T C, MILITZER B. Ab initio simulations of liquid carbon monoxide at high pressure [J]. High Energy Density Physics, 2017, 22: 41–45. doi: 10.1016/j.hedp.2017.02.005
|
| [2] |
SHI Y, WANG J Z, ZHANG Z Y, et al. Carbon monoxide in an extremely metal-poor galaxy [J]. Nature Communications, 2016, 7: 13789. doi: 10.1038/ncomms13789
|
| [3] |
EREMETS M I, STRUZHKIN V V, MAO H K, et al. Exploring superconductivity in low-Z materials at megabar pressures [J]. Physica B: Condensed Matter, 2003, 329: 1312–1316.
|
| [4] |
YAMANAKA S, KINI N S, KUBO A, et al. Topochemical 3D polymerization of C60 under high pressure at elevated temperatures [J]. Journal of the American Chemical Society, 2008, 130(13): 4303–4309. doi: 10.1021/ja076761k
|
| [5] |
IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510
|
| [6] |
EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
|
| [7] |
MAO H K, JI C, LI B, et al. Extreme energetic materials at ultrahigh pressures [J]. Engineering, 2020, 6(9): 976–980. doi: 10.1016/j.eng.2020.07.010
|
| [8] |
YOO C S. Chemistry under extreme conditions: pressure evolution of chemical bonding and structure in dense solids [J]. Matter and Radiation at Extremes, 2020, 5(1): 018202. doi: 10.1063/1.5127897
|
| [9] |
LIPP M, EVANS W J, GARCIA-BAONZA V, et al. Carbon monoxide: spectroscopic characterization of the high-pressure polymerized phase [J]. Journal of Low Temperature Physics, 1998, 111(3): 247–256. doi: 10.1023/A:1022267115640
|
| [10] |
SUN J, KLUG D D, PICKARD C J, et al. Controlling the bonding and band gaps of solid carbon monoxide with pressure [J]. Physical Review Letters, 2011, 106(14): 145502. doi: 10.1103/PhysRevLett.106.145502
|
| [11] |
BATYREV I G, MATTSON W D, RICE B M. Modeling of a random network of extended CO solids [J]. AIP Conference Proceedings, 2012, 1426(1): 717–720. doi: 10.1063/1.3686379
|
| [12] |
XIA K, SUN J, PICKARD C J, et al. Ground state structure of high-energy-density polymeric carbon monoxide [J]. Physical Review B, 2017, 95(14): 144102. doi: 10.1103/PhysRevB.95.144102
|
| [13] |
SUN C L, GUO W, ZHU J L, et al. High-energy-density polymeric carbon oxide: layered CxOy solids under pressure [J]. Physical Review B, 2021, 104(9): 094102. doi: 10.1103/PhysRevB.104.094102
|
| [14] |
HUANG X, JIAO F B, ZHANG C Y, et al. Investigation of polymeric CO synthesized at high pressure and its stability under ambient conditions: a first-principles study [J]. The Journal of Physical Chemistry C, 2022, 126(46): 19571–19579. doi: 10.1021/acs.jpcc.2c04467
|
| [15] |
KONDRIN M V, LEBED Y B, BRAZHKIN V V. A new polymorph of graphene monoxide: an all-sp3 bonded metal and ambient pressure superconductor [J]. CrystEngComm, 2023, 25(9): 1328–1332. doi: 10.1039/D2CE01561G
|
| [16] |
SUN S H, XU J J, GOU H Y, et al. Pressure-induced in situ construction of p-CO/HNIW explosive composites with excellent laser initiation and detonation performance [J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20718–20727. doi: 10.1021/acsami.1c03856
|
| [17] |
MILLS R L, SCHIFERL D, KATZ A I, et al. New phases and chemical reactions in solid CO under pressure [J]. Journal de Physique Colloques, 1984, 45(C8): 189–190. doi: 10.1051/jphyscol:1984833
|
| [18] |
DANG N C, CIEZAK-JENKINS J A. Kinetic effects on the morphology and stability of the pressure-induced extended-solid of carbon monoxide [J]. The Journal of Chemical Physics, 2018, 148(14): 144702. doi: 10.1063/1.5004556
|
| [19] |
EVANS W J, LIPP M J, YOO C S, et al. Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer [J]. Chemistry of Materials, 2006, 18(10): 2520–2531. doi: 10.1021/cm0524446
|
| [20] |
SHIEH S R, JARRIGE I, WU M, et al. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18402–18406. doi: 10.1073/pnas.1305116110
|
| [21] |
RYU Y J, KIM M, LIM J, et al. Dense carbon monoxide to 160 GPa: stepwise polymerization to two-dimensional layered solid [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27548–27554. doi: 10.1021/acs.jpcc.6b09434
|
| [22] |
LIPP M J, EVANS W J, BAER B J, et al. High-energy-density extended CO solid [J]. Nature Materials, 2005, 4(3): 211–215. doi: 10.1038/nmat1321
|
| [23] |
CEPPATELLI M, SERDYUKOV A, BINI R, et al. Pressure induced reactivity of solid CO by FTIR studies [J]. The Journal of Physical Chemistry B, 2009, 113(19): 6652–6660. doi: 10.1021/jp900586a
|
| [24] |
LI X Y, PENG Z H, JIANG C W, et al. Insights into the structure and polymerization mechanisms of CO molecules under pressure [J]. Progress in Solid State Chemistry, 2024, 76: 100491. doi: 10.1016/j.progsolidstchem.2024.100491
|
| [25] |
SANTORO M, BINI R, CEPPATELLI M, et al. High pressure structural changes in amorphous polymeric carbon monoxide by combined infrared spectroscopy and X-ray diffraction [J]. The Journal of Physical Chemistry C, 2022, 126(28): 11840–11845. doi: 10.1021/acs.jpcc.2c03204
|
| [26] |
SCELTA D, CEPPATELLI M, BINI R, et al. High temperature decomposition of polymeric carbon monoxide at pressures up to 120 GPa [J]. The Journal of Chemical Physics, 2023, 159(8): 084501. doi: 10.1063/5.0157907
|
| [27] |
SANTORO M, DZIUBEK K, SCELTA D, et al. High pressure synthesis of all-transoid polycarbonyl [―(C=O)―]n in a zeolite [J]. Chemistry of Materials, 2015, 27(19): 6486–6489. doi: 10.1021/acs.chemmater.5b02596
|
| [28] |
SANTORO M, SCELTA D, DZIUBEK K, et al. Synthesis of 1D polymer/zeolite nanocomposites under high pressure [J]. Chemistry of Materials, 2016, 28(11): 4065–4071. doi: 10.1021/acs.chemmater.6b01639
|
| [29] |
RADEMACHER N, BAYARJARGAL L, MORGENROTH W, et al. The local atomic structures of liquid CO at 3.6 GPa and polymerized CO at 0 to 30 GPa from high-pressure pair distribution function analysis [J]. Chemistry—A European Journal, 2014, 20(36): 11531–11539. doi: 10.1002/chem.201403000
|
| [30] |
YANG Y P, CHENG P, ZHANG S L, et al. Theoretical insights into the CO dimerization and trimerization on Pt nanocluster [J]. RSC Advances, 2016, 6(6): 4354–4364. doi: 10.1039/C5RA25989D
|
| [31] |
YANG Y P, CHENG P, HUANG S P. Theoretical study on the catalysis effect of platinum cluster during carbon monoxide polymer growth [J]. ChemistrySelect, 2017, 2(6): 2150–2158. doi: 10.1002/slct.201601699
|
| [32] |
RYU Y J, YOO C S, KIM M, et al. Hydrogen-doped polymeric carbon monoxide at high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(18): 10078–10086. doi: 10.1021/acs.jpcc.7b01506
|
| [33] |
RYU Y J, YOO C S, LIM J, et al. High-density COHX network glass [J]. The Journal of Physical Chemistry C, 2020, 124(1): 107–114. doi: 10.1021/acs.jpcc.9b09479
|
| [34] |
MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations [J]. Journal of Computational Chemistry, 2009, 30(13): 2157–2164. doi: 10.1002/jcc.21224
|
| [35] |
VANDEVONDELE J, KRACK M, MOHAMED F, et al. QUICKSTEP: fast and accurate density functional calculations using a mixed gaussian and plane waves approach [J]. Computer Physics Communications, 2005, 167(2): 103–128. doi: 10.1016/j.cpc.2004.12.014
|
| [36] |
LIPPERT G, HUTTER J, PARRINELLO M. A hybrid Gaussian and plane wave density functional scheme [J]. Molecular Physics, 1997, 92(3): 477–488. doi: 10.1080/002689797170220
|
| [37] |
VANDEVONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases [J]. The Journal of Chemical Physics, 2007, 127(11): 114105. doi: 10.1063/1.2770708
|
| [38] |
GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104. doi: 10.1063/1.3382344
|
| [39] |
BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling [J]. The Journal of Chemical Physics, 2007, 126(1): 014101. doi: 10.1063/1.2408420
|
| [40] |
MOMMA K, IZUMI F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
|
| [41] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
|
| [42] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
|
| [43] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169. doi: 10.1103/PhysRevB.54.11169
|
| [44] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
|
| [45] |
WOO T K, MARGL P M, BLÖCHL P E, et al. A combined car-parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis [J]. The Journal of Physical Chemistry B, 1997, 101(40): 7877–7880. doi: 10.1021/jp9717296
|
| [46] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
|