Volume 39 Issue 12
Dec 2025
Turn off MathJax
Article Contents
LI Xiuyuan, PENG Zihuan, JIANG Chongwen, HUANG Zhihong, LI Nan. Theoretical Study on the Polymerization Mechanism of Hydrogen-Doped Carbon Monoxide under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 123102. doi: 10.11858/gywlxb.20251088
Citation: LI Xiuyuan, PENG Zihuan, JIANG Chongwen, HUANG Zhihong, LI Nan. Theoretical Study on the Polymerization Mechanism of Hydrogen-Doped Carbon Monoxide under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 123102. doi: 10.11858/gywlxb.20251088

Theoretical Study on the Polymerization Mechanism of Hydrogen-Doped Carbon Monoxide under High Pressure

doi: 10.11858/gywlxb.20251088
  • Received Date: 09 May 2025
  • Rev Recd Date: 27 May 2025
  • Available Online: 27 May 2025
  • Issue Publish Date: 05 Dec 2025
  • Carbon monoxide (CO), as a prototypical low-Z molecular system, can polymerize under high pressure to form polymeric carbon monoxide (p-CO). The polymerization mechanisms and structures are of fundamental importance for understanding pressure-induced bonding and exploring novel functional materials. However, progress in this field has been hindered by two major challenges: the high-pressure requirements for CO and the metastable property of p-CO at ambient pressure. Recent studies have shown that hydrogen (H2) doping can facilitate the polymerization of CO, but the polymerization mechanisms and structures are still poorly understood. In this work, molecular dynamics simulations were performed to investigate the influence of H2 on the polymerization progress of CO. The results reveal that a doping ratio of 10% can optimally reduce the polymerization pressure of CO. At 3–4 GPa, H2 physically induces the dimerization reaction of CO. At 5 GPa, the chemical inertness of H2 inhibits further polymerization of CO. When the pressure reaches 10 GPa, H2 participates in the polymerization reaction, forming C―H and O―H bonds. Finally, the polymerization produces a disordered three-dimensional network structure (p-CO/H) dominated by C―C and C=O bonds.

     

  • loading
  • [1]
    LEONHARDI T C, MILITZER B. Ab initio simulations of liquid carbon monoxide at high pressure [J]. High Energy Density Physics, 2017, 22: 41–45. doi: 10.1016/j.hedp.2017.02.005
    [2]
    SHI Y, WANG J Z, ZHANG Z Y, et al. Carbon monoxide in an extremely metal-poor galaxy [J]. Nature Communications, 2016, 7: 13789. doi: 10.1038/ncomms13789
    [3]
    EREMETS M I, STRUZHKIN V V, MAO H K, et al. Exploring superconductivity in low-Z materials at megabar pressures [J]. Physica B: Condensed Matter, 2003, 329: 1312–1316.
    [4]
    YAMANAKA S, KINI N S, KUBO A, et al. Topochemical 3D polymerization of C60 under high pressure at elevated temperatures [J]. Journal of the American Chemical Society, 2008, 130(13): 4303–4309. doi: 10.1021/ja076761k
    [5]
    IOTA V, YOO C S, CYNN H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures [J]. Science, 1999, 283(5407): 1510–1513. doi: 10.1126/science.283.5407.1510
    [6]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [7]
    MAO H K, JI C, LI B, et al. Extreme energetic materials at ultrahigh pressures [J]. Engineering, 2020, 6(9): 976–980. doi: 10.1016/j.eng.2020.07.010
    [8]
    YOO C S. Chemistry under extreme conditions: pressure evolution of chemical bonding and structure in dense solids [J]. Matter and Radiation at Extremes, 2020, 5(1): 018202. doi: 10.1063/1.5127897
    [9]
    LIPP M, EVANS W J, GARCIA-BAONZA V, et al. Carbon monoxide: spectroscopic characterization of the high-pressure polymerized phase [J]. Journal of Low Temperature Physics, 1998, 111(3): 247–256. doi: 10.1023/A:1022267115640
    [10]
    SUN J, KLUG D D, PICKARD C J, et al. Controlling the bonding and band gaps of solid carbon monoxide with pressure [J]. Physical Review Letters, 2011, 106(14): 145502. doi: 10.1103/PhysRevLett.106.145502
    [11]
    BATYREV I G, MATTSON W D, RICE B M. Modeling of a random network of extended CO solids [J]. AIP Conference Proceedings, 2012, 1426(1): 717–720. doi: 10.1063/1.3686379
    [12]
    XIA K, SUN J, PICKARD C J, et al. Ground state structure of high-energy-density polymeric carbon monoxide [J]. Physical Review B, 2017, 95(14): 144102. doi: 10.1103/PhysRevB.95.144102
    [13]
    SUN C L, GUO W, ZHU J L, et al. High-energy-density polymeric carbon oxide: layered CxOy solids under pressure [J]. Physical Review B, 2021, 104(9): 094102. doi: 10.1103/PhysRevB.104.094102
    [14]
    HUANG X, JIAO F B, ZHANG C Y, et al. Investigation of polymeric CO synthesized at high pressure and its stability under ambient conditions: a first-principles study [J]. The Journal of Physical Chemistry C, 2022, 126(46): 19571–19579. doi: 10.1021/acs.jpcc.2c04467
    [15]
    KONDRIN M V, LEBED Y B, BRAZHKIN V V. A new polymorph of graphene monoxide: an all-sp3 bonded metal and ambient pressure superconductor [J]. CrystEngComm, 2023, 25(9): 1328–1332. doi: 10.1039/D2CE01561G
    [16]
    SUN S H, XU J J, GOU H Y, et al. Pressure-induced in situ construction of p-CO/HNIW explosive composites with excellent laser initiation and detonation performance [J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20718–20727. doi: 10.1021/acsami.1c03856
    [17]
    MILLS R L, SCHIFERL D, KATZ A I, et al. New phases and chemical reactions in solid CO under pressure [J]. Journal de Physique Colloques, 1984, 45(C8): 189–190. doi: 10.1051/jphyscol:1984833
    [18]
    DANG N C, CIEZAK-JENKINS J A. Kinetic effects on the morphology and stability of the pressure-induced extended-solid of carbon monoxide [J]. The Journal of Chemical Physics, 2018, 148(14): 144702. doi: 10.1063/1.5004556
    [19]
    EVANS W J, LIPP M J, YOO C S, et al. Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer [J]. Chemistry of Materials, 2006, 18(10): 2520–2531. doi: 10.1021/cm0524446
    [20]
    SHIEH S R, JARRIGE I, WU M, et al. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18402–18406. doi: 10.1073/pnas.1305116110
    [21]
    RYU Y J, KIM M, LIM J, et al. Dense carbon monoxide to 160 GPa: stepwise polymerization to two-dimensional layered solid [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27548–27554. doi: 10.1021/acs.jpcc.6b09434
    [22]
    LIPP M J, EVANS W J, BAER B J, et al. High-energy-density extended CO solid [J]. Nature Materials, 2005, 4(3): 211–215. doi: 10.1038/nmat1321
    [23]
    CEPPATELLI M, SERDYUKOV A, BINI R, et al. Pressure induced reactivity of solid CO by FTIR studies [J]. The Journal of Physical Chemistry B, 2009, 113(19): 6652–6660. doi: 10.1021/jp900586a
    [24]
    LI X Y, PENG Z H, JIANG C W, et al. Insights into the structure and polymerization mechanisms of CO molecules under pressure [J]. Progress in Solid State Chemistry, 2024, 76: 100491. doi: 10.1016/j.progsolidstchem.2024.100491
    [25]
    SANTORO M, BINI R, CEPPATELLI M, et al. High pressure structural changes in amorphous polymeric carbon monoxide by combined infrared spectroscopy and X-ray diffraction [J]. The Journal of Physical Chemistry C, 2022, 126(28): 11840–11845. doi: 10.1021/acs.jpcc.2c03204
    [26]
    SCELTA D, CEPPATELLI M, BINI R, et al. High temperature decomposition of polymeric carbon monoxide at pressures up to 120 GPa [J]. The Journal of Chemical Physics, 2023, 159(8): 084501. doi: 10.1063/5.0157907
    [27]
    SANTORO M, DZIUBEK K, SCELTA D, et al. High pressure synthesis of all-transoid polycarbonyl [―(C=O)―]n in a zeolite [J]. Chemistry of Materials, 2015, 27(19): 6486–6489. doi: 10.1021/acs.chemmater.5b02596
    [28]
    SANTORO M, SCELTA D, DZIUBEK K, et al. Synthesis of 1D polymer/zeolite nanocomposites under high pressure [J]. Chemistry of Materials, 2016, 28(11): 4065–4071. doi: 10.1021/acs.chemmater.6b01639
    [29]
    RADEMACHER N, BAYARJARGAL L, MORGENROTH W, et al. The local atomic structures of liquid CO at 3.6 GPa and polymerized CO at 0 to 30 GPa from high-pressure pair distribution function analysis [J]. Chemistry—A European Journal, 2014, 20(36): 11531–11539. doi: 10.1002/chem.201403000
    [30]
    YANG Y P, CHENG P, ZHANG S L, et al. Theoretical insights into the CO dimerization and trimerization on Pt nanocluster [J]. RSC Advances, 2016, 6(6): 4354–4364. doi: 10.1039/C5RA25989D
    [31]
    YANG Y P, CHENG P, HUANG S P. Theoretical study on the catalysis effect of platinum cluster during carbon monoxide polymer growth [J]. ChemistrySelect, 2017, 2(6): 2150–2158. doi: 10.1002/slct.201601699
    [32]
    RYU Y J, YOO C S, KIM M, et al. Hydrogen-doped polymeric carbon monoxide at high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(18): 10078–10086. doi: 10.1021/acs.jpcc.7b01506
    [33]
    RYU Y J, YOO C S, LIM J, et al. High-density COHX network glass [J]. The Journal of Physical Chemistry C, 2020, 124(1): 107–114. doi: 10.1021/acs.jpcc.9b09479
    [34]
    MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations [J]. Journal of Computational Chemistry, 2009, 30(13): 2157–2164. doi: 10.1002/jcc.21224
    [35]
    VANDEVONDELE J, KRACK M, MOHAMED F, et al. QUICKSTEP: fast and accurate density functional calculations using a mixed gaussian and plane waves approach [J]. Computer Physics Communications, 2005, 167(2): 103–128. doi: 10.1016/j.cpc.2004.12.014
    [36]
    LIPPERT G, HUTTER J, PARRINELLO M. A hybrid Gaussian and plane wave density functional scheme [J]. Molecular Physics, 1997, 92(3): 477–488. doi: 10.1080/002689797170220
    [37]
    VANDEVONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases [J]. The Journal of Chemical Physics, 2007, 127(11): 114105. doi: 10.1063/1.2770708
    [38]
    GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104. doi: 10.1063/1.3382344
    [39]
    BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling [J]. The Journal of Chemical Physics, 2007, 126(1): 014101. doi: 10.1063/1.2408420
    [40]
    MOMMA K, IZUMI F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. Journal of Applied Crystallography, 2011, 44(6): 1272–1276. doi: 10.1107/S0021889811038970
    [41]
    HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
    [42]
    KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
    [43]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169. doi: 10.1103/PhysRevB.54.11169
    [44]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [45]
    WOO T K, MARGL P M, BLÖCHL P E, et al. A combined car-parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis [J]. The Journal of Physical Chemistry B, 1997, 101(40): 7877–7880. doi: 10.1021/jp9717296
    [46]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(220) PDF downloads(14) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return