Volume 39 Issue 12
Dec 2025
Turn off MathJax
Article Contents
LUO Yuting, ZHAO Tingting, JU Kaixuan, WANG Zhiyong. Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087
Citation: LUO Yuting, ZHAO Tingting, JU Kaixuan, WANG Zhiyong. Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087

Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance

doi: 10.11858/gywlxb.20251087
  • Received Date: 06 May 2025
  • Rev Recd Date: 19 Jun 2025
  • Accepted Date: 22 Sep 2025
  • Available Online: 20 Jun 2025
  • Issue Publish Date: 05 Dec 2025
  • Shelter layers, recognized as a critical component in modern military defense systems, are designed to protect strategically important rear assets. Given the prevalent application of block stones as primary filling materials in these protective structures, comprehensive investigations into their fundamental ballistic resistance mechanisms and practical performance optimization have become increasingly crucial for defense engineering. Therefore, the dynamic fragmentation behavior of block stones under high-velocity projectile impact was systematically simulated using discrete element spherical particles and bonded particle model (BPM) in this paper. The process of rigid projectile vertical penetration into densely packed block stone structure was numerically simulated, with the influences of block stone particle size, shape, and spatial arrangement characteristics on its anti-penetration performance being explored. The results revealed two primary energy dissipation mechanisms governing the shelter layer performance: over 90% of the kinetic energy of the projectile was dissipated through the combined effects of inter-block collisions and sliding friction during the penetration process. Meanwhile, the number of break block stones is found to be negatively correlated with the block stone particle size and positively correlated with the aspect ratio (long-to-short axis) of the block stones. Moreover, when single-sized block stones are used in a multi-layer staggered arrangement, the penetration depth of the projectile is primarily determined by the magnitude of the peak penetration resistance. Specifically, the maximum penetration resistance and the minimum penetration depth are exhibited by the scenario with circular block stones of 120 mm particle size. However, when a layered arrangement with block stone particle size gradiently decreasing along the direction of the impact face is employed, the overall blast-resistant effect of the structure is not effectively enhanced. Finally, the results of the study can provide a reference for understanding the underlying mechanism of the shielding effect of block stone structure.

     

  • loading
  • [1]
    穆朝民, 任辉启. 弹丸对钢筋混凝土中钢筋交汇处侵彻效应研究 [J]. 高压物理学报, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006

    MU C M, REN H Q. Research on the effect of the projectile penetrating into the reinforced concrete targets at the intersection of the steel bar [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006
    [2]
    邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能 [J]. 高压物理学报, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540

    DENG X H, WANG D F. Anti-blast performance of ultra-high performance concrete-filled double steel tubes under close in blast loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
    [3]
    AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESLTR339 [R]. Florida, USA: Tyndall Air Force Base, 1982.
    [4]
    GEBARA J M, PAN J B, ANDERSON J B. 浅埋结构块石防弹层的有限块法分析 [J]. 王承树, 译. 防护工程, 1994(1): 84–93.

    GEBARA J M, PAN J B, ANDERSON J B. Finite block method analysis of the ballistic protection layer of shallow buried structural blocks [J]. Translated by WANG C S. Protective Engineering, 1994(1): 84–93.
    [5]
    ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. doi: 10.1016/j.ijimpeng.2004.04.009
    [6]
    WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1 320 m/s [J]. Construction and Building Materials, 2015, 741: 88–200. doi: 10.1016/j.conbuildmat.2014.10.041
    [7]
    WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. doi: 10.1016/j.ijimpeng.2015.05.007
    [8]
    逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002
    [9]
    FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. doi: 10.1016/j.ijimpeng.2013.08.010
    [10]
    NIU Y Q, HUANG Z X, JIA X, et al. Research on the penetration performance of shaped charge jet into block stone concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105060. doi: 10.1016/J.IJIMPENG.2024.105060
    [11]
    郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428

    GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
    [12]
    MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. doi: 10.1007/s11831-021-09553-2
    [13]
    WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. doi: 10.1016/j.ijimpeng.2020.103529
    [14]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [15]
    张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303

    ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
    [16]
    LI W Y, SHI C, ZHANG C. Numerical study on the effect of grain size on rock dynamic tensile properties using PFC-GBM [J]. Computational Particle Mechanics, 2024, 11(1): 481–489. doi: 10.1007/s40571-023-00634-6
    [17]
    FAN R, LUO Y, GONG H L, et al. Dynamic damage and fracture characteristics of granite under cyclic impact simulated with coupled finite-difference and discrete element methods [J]. Mechanics of Time-Dependent Materials, 2023, 27(2): 469–487. doi: 10.1007/s11043-023-09597-w,
    [18]
    鞠明和, 陶泽军, 蔚立元, 等. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究 [J]. 岩土力学, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515

    JU M H, TAO Z J, YU L Y, et al. Damage and fracture characteristics of hard rocks caused by hysterisis and repeated impacts of steel particles [J]. Rock and Soil Mechanics, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515
    [19]
    高飞, 邓树新, 张国凯, 等. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析 [J]. 兵工学报, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014

    GAO F, DENG S X, ZHANG G K, et al. Experimental study and theoretical analysis of the size effect for scale model projectile penetrating into rock target [J]. Acta Armamentarii, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014
    [20]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
    [21]
    章涵, 向国梁, 王乐华, 等. 基于三维模型构建新方法的块石形状效应下S-RM宏细观剪切力学行为 [J]. 岩石力学与工程学报, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988

    ZHANG H, XIANG G L, WANG L H, et al. Effect of block form on the shear marco- and meso-mechanical behaviors of S-RM based on 3D novel modelling approach [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988
    [22]
    崔溦, 魏杰, 王超, 等. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟 [J]. 岩土工程学报, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009

    CUI W, WEI J, WANG C, et al. Discrete element simulation of collapse characteristics of particle column considering gradation and shape [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009
    [23]
    ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
    [24]
    赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法 [J]. 计算力学学报, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213

    ZHAO T T, FENG Y T. Exact scaling laws and coarse-grained discrete element modelling of large scale granular systems [J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213
    [25]
    FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems-Ⅰ: exact scaling laws [J]. Computational Particle Mechanics, 2014, 1(2): 159–168. doi: 10.1007/s40571-014-0010-y
    [26]
    张杰, 王志华, 王志勇, 等. 骨料对刚性弹正侵彻混凝土过程的影响机理 [J]. 中国科学: 技术科学, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483

    ZHANG J, WANG Z H, WANG Z Y, et al. Impact mechanisms of aggregate on rigid projectile normal penetration into concrete target [J]. Scientia Sinica: Technologica, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483
    [27]
    徐飞. 普通混凝土骨料最小空隙率的探讨 [J]. 混凝土, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006

    XU F. The research of minimal fraction void of concrete aggregate [J]. Concrete, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006
    [28]
    NASR A A, WANG B Z, CHEN S G, et al. Monitoring the flow patterns of high performance self-compacting concrete in the voids of sloped rock-filled concrete structures [J]. Ain Shams Engineering Journal, 2025, 16(3): 103313. doi: 10.1016/j.asej.2025.103313
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(3)

    Article Metrics

    Article views(208) PDF downloads(14) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return