Turn off MathJax
Article Contents
WANG Xinxin, BAO Qiang, HE Anmin, SHAO Jianli, WANG Pei. Molecular Dynamics Simulation of Micro-Jetting and Spallation in Helium-Bubble Copper under Double Supported Shocks[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251075
Citation: WANG Xinxin, BAO Qiang, HE Anmin, SHAO Jianli, WANG Pei. Molecular Dynamics Simulation of Micro-Jetting and Spallation in Helium-Bubble Copper under Double Supported Shocks[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251075

Molecular Dynamics Simulation of Micro-Jetting and Spallation in Helium-Bubble Copper under Double Supported Shocks

doi: 10.11858/gywlxb.20251075
  • Received Date: 14 Apr 2025
  • Rev Recd Date: 19 May 2025
  • Available Online: 20 May 2025
  • Micro-jetting and micro-spallation at metal interfaces under intense shock loading play pivotal roles in applications such as inertial confinement fusion (ICF). These phenomena exhibit inherent complexity due to their multi-scale dynamics, strong nonlinearity, and coupled multi-field interactions. Under extreme irradiation conditions, the formation of high-pressure nanoscale helium bubbles significantly alters interface failure mechanisms. Using molecular dynamics methods, we investigate micro-jet growth and damage evolution in helium-containing copper subjected to double supported shock loadings. Helium bubbles demonstrate lower critical activation stress thresholds for expansion compared to void nucleation, with these thresholds being dependent on bubble distribution and number density. Under low-pressure primary shocks, helium-containing metals produce more pronounced micro-jets than pure metals. During secondary shocks, helium bubbles promote jet fragmentation, resulting in higher maximum velocities at micro-jet tips while maintaining comparable velocity distributions in micro-jet bodies. Secondary shocks show negligible effects on bulk helium bubbles that were previously compressed by initial shocks and partially rebounded due to rarefaction waves without complete recovery. Near-surface ruptured bubble walls may reattach to bubble bases after secondary shocks, temporarily re-trapping helium atoms that are subsequently released during unloading-induced re-expansion and rupture. The collapse mechanism of helium bubbles under secondary shock is closely related to the helium bubbles size and the strength of secondary shock. This study establishes fundamental physical understanding and provides a theoretical foundation for future cross-scale investigations of coupled micro-jetting and micro-spallation evolution in irradiated helium-containing metals.

     

  • loading
  • [1]
    韩长生. 估算冲击加载下材料自由面微射喷射量的一个半经验解析公式 [J]. 高压物理学报, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009

    HAN C S. A semi-empirical equation for estimating the micro-jet ejection from shocked free-surface [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009
    [2]
    韩长生, 经福谦, 丁儆, 等. 不同加载速率下铝自由面微粒子喷射现象研究 [J]. 高压物理学报, 1989, 3(2): 97–106. doi: 10.11858/gywlxb.1989.02.001

    HAN C S, JING F Q, DING J, et al. Study on the phenomena of the mass ejection from the free surface of aluminum at different dynamic loading rates [J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 97–106. doi: 10.11858/gywlxb.1989.02.001
    [3]
    王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010

    WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010
    [4]
    MARTZ J C, SCHWARTZ A J. Plutonium: aging mechanisms and weapon pit lifetime assessment [J]. JOM, 2003, 55(9): 19–23. doi: 10.1007/s11837-003-0023-0
    [5]
    GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163(1/2): 217–224. doi: 10.1007/s10704-009-9437-1
    [6]
    GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
    [7]
    ZHU Q, SHAO J L, WANG P. The growth and coalescence of helium bubbles in bicrystal copper under tension [J]. Journal of Nuclear Materials, 2023, 582: 154489. doi: 10.1016/j.jnucmat.2023.154489
    [8]
    ZHU Q, SHAO J L, WANG P. Mechanism of nanoscale helium bubbles influencing dynamic tensile response of polycrystalline copper [J]. Mechanics of Materials, 2023, 185: 104755. doi: 10.1016/j.mechmat.2023.104755
    [9]
    JIANG D D, ZHOU T T, WANG P, et al. Dynamic tensile fracture of liquid copper containing helium bubbles [J]. International Journal of Mechanical Sciences, 2022, 232: 107585. doi: 10.1016/j.ijmecsci.2022.107585
    [10]
    WANG X X, NIU L L, WANG S Q. Strong trapping and slow diffusion of helium in a tungsten grain boundary [J]. Journal of Nuclear Materials, 2017, 487: 158–166. doi: 10.1016/j.jnucmat.2017.02.010
    [11]
    JIANG D D, SHAO J L, HE A M, et al. Dynamic fracture characteristics of nanocrystalline Al containing He bubbles [J]. Scripta Materialia, 2023, 234: 115546. doi: 10.1016/j.scriptamat.2023.115546
    [12]
    祁美兰, 贺红亮, 王永刚, 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21(2): 145–150. doi: 10.3969/j.issn.1000-5773.2007.02.005

    QI M L, HE H L, WANG Y G, et al. Dynamic analysis of helium bubble growth in the pure Al under high strain-rate loading [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145–150. doi: 10.3969/j.issn.1000-5773.2007.02.005
    [13]
    张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06

    ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubbles [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06
    [14]
    FENSIN S, JONES D, MARTINEZ D, et al. The role of helium on ejecta production in copper [J]. Materials, 2020, 13(6): 1270. doi: 10.3390/ma13061270
    [15]
    WANG X X, SHAO J L, WU B, et al. Enhancement of metal surface micro-jet by nanoscale helium bubbles under supported and unsupported shocks [J]. Physics of Fluids, 2023, 35(5): 052112. doi: 10.1063/5.0147095
    [16]
    LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
    [17]
    WANG X X, HE A M, YANG Y, et al. Shock responses of nanoporous copper with helium doping by molecular dynamics simulations [J]. Computational Materials Science, 2021, 188: 110190. doi: 10.1016/j.commatsci.2020.110190
    [18]
    WU H W, ZHOU T T, WANG P. The rupture and ejection of near-surface helium bubble in single crystal Cu under shock loading [J]. Journal of Nuclear Materials, 2022, 558: 153404. doi: 10.1016/j.jnucmat.2021.153404
    [19]
    YAN S N, WU B, WANG X X, et al. The mechanisms of temperature rise and wavefront broadening induced by nanoscale He bubbles in copper during shock loadings [J]. Journal of Applied Physics, 2025, 137(20): 205903. doi: 10.1063/5.0265864
    [20]
    FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
    [21]
    ZHOU T T, ZHAO F Q, ZHOU H Q, et al. Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble [J]. International Journal of Mechanical Sciences, 2022, 234: 107681. doi: 10.1016/j.ijmecsci.2022.107681
    [22]
    DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
    [23]
    BAO Q, WU B, WANG X X, et al. Molecular dynamics investigation of unsupported double-shock induced micro-jet behaviors in copper containing helium bubbles [J]. Physics of Fluids, 2024, 36(11): 112101. doi: 10.1063/5.0232654
    [24]
    BAO Q, SUI H N, WU B, et al. Near-surface fragmentation in irradiated copper under two successive shock loading: effects of local temperature re-distribution and helium bubble expansion [J]. Materials & Design, 2025, 254: 114013. doi: 10.1016/j.matdes.2025.114013
    [25]
    TRINKAUS H, SINGH B N. Helium accumulation in metals during irradiation-where do we stand? [J]. Journal of Nuclear Materials, 2003, 323(2/3): 229–242. doi: 10.1016/j.jnucmat.2003.09.001
    [26]
    SCHWARTZ A J, WALL M A, ZOCCO T G, et al. Characterization and modelling of helium bubbles in self-irradiated plutonium alloys [J]. Philosophical Magazine, 2005, 85(4): 479–488. doi: 10.1080/02678370412331320026
    [27]
    WU W D, SHAO J L. Numerical and theoretical study on shock-induced coalescence of He bubbles [J]. International Journal of Mechanical Sciences, 2022, 234: 107699. doi: 10.1016/j.ijmecsci.2022.107699
    [28]
    SHAO J L, WU W D. Shock-induced collapse and migration of nanoscale He bubble in single crystal Al [J]. Scripta Materialia, 2023, 222: 115033. doi: 10.1016/j.scriptamat.2022.115033
    [29]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [30]
    MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations [J]. Physical Review B, 2001, 63(22): 224106. doi: 10.1103/PhysRevB.63.224106
    [31]
    BRINGAE M, CAZAMIAS J U, ERHART P, et al. Atomistic shock Hugoniot simulation of single-crystal copper [J]. Journal of Applied Physics, 2004, 96(7): 3793–3799. doi: 10.1063/1.1789266
    [32]
    LUO S N, HAN L B, XIE Y, et al. The relation between shock-state particle velocity and free surface velocity: a molecular dynamics study on single crystal Cu and silica glass [J]. Journal of Applied Physics, 2008, 103(9): 93530. doi: 10.1063/1.2919571
    [33]
    WANG L, NING X J. Molecular dynamics simulations of helium behaviour in copper crystals [J]. Chinese Physics Letters, 2003, 20(9): 1416–1419. doi: 10.1088/0256-307X/20/9/302
    [34]
    SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. doi: 10.1088/0965-0393/22/2/025012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views(225) PDF downloads(22) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return