Volume 39 Issue 1
Jan 2024
Turn off MathJax
Article Contents
ZHU Yuan, JIANG Genzhu, WANG Xiaorong, GUO Hongzhan, SU Aocheng. Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011303. doi: 10.11858/gywlxb.20240818
Citation: ZHU Yuan, JIANG Genzhu, WANG Xiaorong, GUO Hongzhan, SU Aocheng. Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011303. doi: 10.11858/gywlxb.20240818

Effect of High Temperature and High Pressure on the Explosion Characteristics of Ternary Premixed Fuel

doi: 10.11858/gywlxb.20240818
  • Received Date: 27 May 2024
  • Rev Recd Date: 24 Jun 2024
  • Accepted Date: 29 Aug 2024
  • Available Online: 10 Oct 2024
  • Issue Publish Date: 05 Jan 2024
  • As a new alternative fuel, ethanol/methane/hydrogen (C2H5OH/CH4/H2) is of great significance for the sustainable development of new energy in China. The effects of different equivalence ratios (0.8−1.4), initial pressures (0.1, 0.2 and 0.4 MPa) and initial temperatures (370, 400 and 450 K) on key explosion characteristics such as peak explosion pressure, peak explosion pressure rise rate, explosion time and deflagration index were analyzed from the experimental and chemical kinetics perspectives. The results show that the explosion characteristic parameters exhibit extreme values when the equivalence ratios between 1.2 and 1.3. The peak explosion pressure is positively correlated with initial pressure and negatively correlated with initial temperature, and this correlation is linear. With the increase in initial pressure, the crack and cytochemical degree of the flame front deepened, and the peak explosion pressure increased. In addition, the maximum deflagration index evaluated under experimental conditions was 20.83 MPa·m/s, indicating that the combustion of premixed fuel/air was at a relatively safe level. The reaction sensitivity analysis of the motives showed that the deflagration reaction was closely related to the H and OH radicals, and R1, R8, R24 and R96 were the top four motif reactions that had the most important impact on the explosion reaction intensity. This work can provide a valuable reference for the application of C2H5OH/CH4/H2 ternary mixed fuel in actual combustion units, the evaluation of fuel safety, and the prevention of explosion accidents.

     

  • loading
  • [1]
    LI B L, HANEKLAUS N. The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China [J]. Energy Reports, 2022, 8(Suppl 4): 1090–1098.
    [2]
    刘尚, 范钦灏, 王巍, 等. 乙醇汽油点燃压燃模式颗粒物排放特性试验 [J]. 内燃机学报, 2023, 41(1): 33–41.

    LIU S, FAN Q H, WANG W, et al. Experiment on particulate number emissions of spark ignition to compression ignition combustion mode for ethanol gasoline [J]. Transactions of Csice, 2023, 41(1): 33–41.
    [3]
    刘旭, 钟汶君, 姜鹏, 等. 乙醇汽油/加氢催化生物柴油双燃料发动机着火燃烧及碳烟生成特性研究 [J]. 工程热物理学报, 2022, 43(8): 2143–2151.

    LIU X, ZHONG W J, JIANG P, et al. Study on ignition combustion and soot formation characteristics of ethanol gasoline-hydrogenated catalytic biodiesel dual fuel engine [J]. Journal of Engineering Thermophysics, 2022, 43(8): 2143–2151.
    [4]
    纪常伟, 辛固, 汪硕峰, 等. 零碳及碳中和燃料内燃机应用进展 [J]. 北京工业大学学报, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007

    JI C W, XIN G, WANG S F, et al. Application progress of zero carbon and carbon-neutral fuel internal combustion engines [J]. Journal of Beijing University of Technology, 2022, 48(3): 273–291. doi: 10.11936/bjutxb2021100007
    [5]
    WANG X R, ZHANG Y, LI T, et al. Investigation of cellularization characteristics of hydrogen-methane-ethanol expanding spherical flame at elevated pressures [J]. Combustion and Flame, 2023, 255: 112866. doi: 10.1016/j.combustflame.2023.112866
    [6]
    WANG X R, YAN C Z, ZHANG Y, et al. Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: experimental and numerical analysis [J]. Renewable Energy, 2024, 227: 120493. doi: 10.1016/j.renene.2024.120493
    [7]
    LI T, WANG X R, MA Y, et al. Investigation on hydrogen/ethanol intrinsic flame instability [J]. Combustion and Flame, 2022, 241: 112064. doi: 10.1016/j.combustflame.2022.112064
    [8]
    张衍, 张嘉玮, 王筱蓉. 高压下氢气-乙醇球形膨胀火焰的层流燃烧速度和火焰不稳定性研究 [J]. 新能源进展, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010

    ZHANG Y, ZHANG J W, WANG X R. Investigation of laminar combustion velocity and flame instability in hydrogen-ethanol spherical expansion flames under high pressures [J]. Advances in New and Renewable Energy, 2023, 11(1): 69–75. doi: 10.3969/j.issn.2095-560X.2023.01.010
    [9]
    BAO Y G, LI X L, XU C S, et al. Experimental and numerical study on morphological characteristics and intrinsic instability of premixed hydrogen/ethanol flames [J]. Fuel, 2024, 371: 132019. doi: 10.1016/j.fuel.2024.132019
    [10]
    LI Y C, BI M S, LI B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels [J]. Fuel, 2018, 233: 269–282. doi: 10.1016/j.fuel.2018.06.042
    [11]
    MOHAMMAD A, JUHANY K A. Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures [J]. Fuel, 2019, 245: 105–114. doi: 10.1016/j.fuel.2019.02.085
    [12]
    OPPONG F, ZHONGYANG L, LI X L, et al. Investigations on explosion characteristics of ethyl acetate [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104409. doi: 10.1016/j.jlp.2021.104409
    [13]
    CHENG J, ZHANG B. Experimental study on the explosion characteristics of ammonia-hydrogen-air mixtures [J]. Fuel, 2024, 363: 131046. doi: 10.1016/j.fuel.2024.131046
    [14]
    MITU M, BRANDES E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels [J]. Fuel, 2017, 203: 460–468. doi: 10.1016/j.fuel.2017.04.124
    [15]
    CUI G, WANG S, LIU J G, et al. Explosion characteristics of a methane/air mixture at low initial temperatures [J]. Fuel, 2018, 234: 886–893. doi: 10.1016/j.fuel.2018.07.139
    [16]
    LIU C, TANG K C, HUANG C Y, et al. Effect of initial pressure on the critical characteristics and overpressure of hydrogen-air premixed gas combustion and explosion [J]. International Journal of Hydrogen Energy, 2024, 49: 311–322. doi: 10.1016/j.ijhydene.2023.07.266
    [17]
    SHEN X B, XIU G, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition [J]. Applied Thermal Engineering, 2017, 120: 741–747. doi: 10.1016/j.applthermaleng.2017.04.040
    [18]
    马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803

    MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
    [19]
    张嘉玮, 张衍, 姜根柱, 等. 乙醇-氢气-空气预混燃气爆炸特性的研究 [J]. 新能源进展, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012

    ZHANG J W, ZHANG Y, JIANG G Z, et al. Explosion characteristics of ethanol-hydrogen-air premixed gas [J]. Advances in New and Renewable Energy, 2023, 11(2): 189–196. doi: 10.3969/j.issn.2095-560X.2023.02.012
    [20]
    LIU G L, WANG J, ZHENG L G, et al. Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions [J]. Energy, 2023, 276: 127607. doi: 10.1016/j.energy.2023.127607
    [21]
    LIU L, LUO Z M, SU B, et al. Study on the explosion characteristics and flame propagation of hydrogen-methane-air mixtures in a closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2024, 87: 105224. doi: 10.1016/j.jlp.2023.105224
    [22]
    LIU J J, YU D Y, LI P, et al. Characteristics of explosion hazards in methane-air mixtures diluted by hydrogen [J]. Energies, 2023, 16(18): 6416. doi: 10.3390/en16186416
    [23]
    CHEN Z M, WANG L, ZENG K. A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol [J]. Energy Conversion and Management, 2019, 192: 11–19. doi: 10.1016/j.enconman.2019.04.011
    [24]
    刘晓龙. 掺氢内燃机燃烧特性及整车燃油经济性的数值模拟研究 [D]. 北京: 北京工业大学, 2015.

    LIU X L. Numerical investigation on combustion characteristics and vehicle fuel economy performance of hydrogen-enriched engines [D]. Beijing: Beijing University of Technology, 2015.
    [25]
    吕晓辉. 乙醇掺氢燃料预混层流燃烧特性的研究 [D]. 武汉: 武汉理工大学, 2011.

    LYU X H. Study on premixed laminar combustion of hydrogen blended ethanol fuels [D]. Wuhan: Wuhan University of Technology, 2011.
    [26]
    马熹群. 汽油掺氢层流预混火焰燃烧特性研究[D]. 北京: 北京理工大学, 2016.

    MA X Q. Study of burning property of gasoline surrogate and hydrogen laminar premixed flame [D]. Beijing: Beijing Institute of Technology, 2016.
    [27]
    XU C S, WANG Q Y, SONG Y, et al. Explosion characteristics of n-decane/hydrogen/air mixtures [J]. International Journal of Hydrogen Energy, 2022, 47(91): 38837–38848. doi: 10.1016/j.ijhydene.2022.09.048
    [28]
    LI H Z, XIAO H H. Experimental study on the explosion characteristics of NH3/DME/air mixtures [J]. Fuel, 2023, 352: 129069. doi: 10.1016/j.fuel.2023.129069
    [29]
    OPPONG F, LI X L, XU C S, et al. Investigations on methyl pentanoate-air mixtures confined explosion and cellularity [J]. Fuel, 2024, 358: 130137. doi: 10.1016/j.fuel.2023.130137
    [30]
    OPPONG F, XU C S, LI X L, et al. Laminar flame characteristics of 2-ethylfuran/air mixtures: experimental and kinetic modelling investigations [J]. Fuel, 2022, 307: 121785. doi: 10.1016/j.fuel.2021.121785
    [31]
    HU E J, TIAN H Z, ZHANG X Y, et al. Explosion characteristics of n-butanol/iso-octane-air mixtures [J]. Fuel, 2017, 188: 90–97. doi: 10.1016/j.fuel.2016.10.002
    [32]
    XU C S, WANG H Y, LI X L, et al. Explosion characteristics of a pyrolysis biofuel derived from rice husk [J]. Journal of Hazardous Materials, 2019, 369: 324–333. doi: 10.1016/j.jhazmat.2019.01.101
    [33]
    SAEED K. Determination of the explosion characteristics of methanol-air mixture in a constant volume vessel [J]. Fuel, 2017, 210: 729–737. doi: 10.1016/j.fuel.2017.09.004
    [34]
    MITTAL G, BURKE S M, DAVIES V A, et al. Autoignition of ethanol in a rapid compression machine [J]. Combustion and Flame, 2014, 161(5): 1164–1171. doi: 10.1016/j.combustflame.2013.11.005
    [35]
    OPPONG F, XU C S, ZHONGYANG L, et al. Evaluation of explosion characteristics of 2-methylfuran/air mixture [J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103954. doi: 10.1016/j.jlp.2019.103954
    [36]
    XIANG L K, JIANG H T, REN F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane [J]. International Journal of Hydrogen Energy, 2020, 45(39): 20501–20514. doi: 10.1016/j.ijhydene.2019.11.040
    [37]
    DUAN X B, LI Y Y, LIU Y Q, et al. Dilution gas and hydrogen enrichment on the laminar flame speed and flame structure of the methane/air mixture [J]. Fuel, 2020, 281: 118794. doi: 10.1016/j.fuel.2020.118794
    [38]
    ECKART S, PIZZUTI L, FRITSCHE C, et al. Experimental study and proposed power correlation for laminar burning velocity of hydrogen-diluted methane with respect to pressure and temperature variation [J]. International Journal of Hydrogen Energy, 2022, 47(9): 6334–6348. doi: 10.1016/j.ijhydene.2021.11.243
    [39]
    BERWAL P, SOLAGAR S, KUMAR S. Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures [J]. International Journal of Hydrogen Energy, 2022, 47(37): 16686–16697. doi: 10.1016/j.ijhydene.2022.03.155
    [40]
    ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. doi: 10.1016/j.ecmx.2024.100532
    [41]
    MORSY M E, YANG J F. The instability of laminar methane/hydrogen/air flames: correlation between small and large-scale explosions [J]. International Journal of Hydrogen Energy, 2022, 47(69): 29959–29970. doi: 10.1016/j.ijhydene.2022.06.289
    [42]
    李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147. doi: 10.11858/gywlxb.2017.02.005
    [43]
    杨春丽, 刘艳, 胡玢, 等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析 [J]. 高压物理学报, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012

    YANG C L, LIU Y, HU F, et al. Effect of nitrogen and water vapor on methane-air mixture explosion elementary reaction and suppression mechanism [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301–308. doi: 10.11858/gywlxb.2017.03.012
    [44]
    夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580

    XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. doi: 10.11858/gywlxb.20220580
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views(477) PDF downloads(28) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return