Volume 36 Issue 4
Jul 2022
Turn off MathJax
Article Contents
LIU Ying, WANG Qinyu, YANG Bo, GUO Huili, CUI Xiaosheng, TAN Jianping. Effect of Hygrothermal Aging on Impact Performance of Flax Fiber-Reinforced Foam Sandwich Panels[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044102. doi: 10.11858/gywlxb.20220524
Citation: LIU Ying, WANG Qinyu, YANG Bo, GUO Huili, CUI Xiaosheng, TAN Jianping. Effect of Hygrothermal Aging on Impact Performance of Flax Fiber-Reinforced Foam Sandwich Panels[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044102. doi: 10.11858/gywlxb.20220524

Effect of Hygrothermal Aging on Impact Performance of Flax Fiber-Reinforced Foam Sandwich Panels

doi: 10.11858/gywlxb.20220524
  • Received Date: 05 Mar 2022
  • Rev Recd Date: 22 Mar 2022
  • Available Online: 11 Jun 2022
  • Issue Publish Date: 28 Jul 2022
  • Sandwich panels, consisting of flax fiber-reinforced polymers panels and polyurethane foam cores, were fabricated by the vacuum-assisted resin injection process. After that, water immersion aging experiments, at four temperatures of 25, 40, 55, and 70 ℃, and low-velocity impacts experiment were conducted successively on the sandwich panels. An orthogonal experimental was designed to investigate the effects of hygrothermal aging on moisture absorption rate and the degradation law for impact resistance of sandwich panels at different temperatures. The impact mechanical response history of sandwich panels such as contact force, displacement, and absorbed energy were analyzed, besides, the damage morphology was observed by visual inspection which reveals the impact damage characteristics of sandwich panels after aging. The results revealed that the moisture absorption rate of the sandwich panel gradually increased with the growth of aging temperature and aging time, their impact resistance decreased stepwise. Compared with the aging case at 25 ℃, the maximum contact force of the sandwich panel aged at 70 ℃ for 30 d decreased by 51.6% and the absorbed energy decreased by 56.7% under the impact energy of 12 J.

     

  • loading
  • [1]
    何艳斌. 航空复合材料典型结构低能量冲击损伤及动力响应研究 [D]. 广州: 华南理工大学, 2016.

    HE Y B. Research on low energy impact damage and dynamic response of aeronautic typical composite construction [D]. Guangzhou: South China University of Technology, 2016.
    [2]
    孙子恒, 王继辉, 倪爱清, 等. 不同铺层复合材料夹芯结构低速冲击与冲击后剩余强度研究 [J]. 复合材料科学与工程, 2020(11): 102–110. doi: 10.3969/j.issn.1003-0999.2020.11.017

    SUN Z H, WANG J H, NI A Q, et al. Study on the low-speed impact performance and residual strength after impact of composite sandwich structure with different layup [J]. Composites Science and Engineering, 2020(11): 102–110. doi: 10.3969/j.issn.1003-0999.2020.11.017
    [3]
    吴盼, 阎建华, 俞建勇, 等. 碳纤/环氧复合材料层合板低速冲击损伤机理研究 [J]. 玻璃钢/复合材料, 2016(3): 31–37. doi: 10.3969/j.issn.1003-0999.2016.03.006

    WU P, YAN J H, YU J Y, et al. Low-velocity impact damage mechanism of carbon/epoxy composite laminates [J]. Fiber Reinforced Plastics/Composites, 2016(3): 31–37. doi: 10.3969/j.issn.1003-0999.2016.03.006
    [4]
    GEMI D S, ŞAHIN Ö S, GEMI L. Experimental investigation of axial compression behavior after low velocity impact of glass fiber reinforced filament wound pipes with different diameter [J]. Composite Structures, 2022, 280: 114929. doi: 10.1016/j.compstruct.2021.114929
    [5]
    MAZIZ A, TARFAOUI M, GEMI L, et al. A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact [J]. Composite Structures, 2021, 276: 114520. doi: 10.1016/j.compstruct.2021.114520
    [6]
    王士杰, 孙泽玉, 陶雷, 等. PMI泡沫对碳纤维复合材料抗低速冲击性能的影响 [J]. 玻璃钢/复合材料, 2019(8): 53–58. doi: 10.3969/j.issn.1003-0999.2019.08.009

    WANG S J, SUN Z Y, TAO L, et al. Effect of PMI foam on low-velocity impact resistance of carbon fiber composites [J]. Fiber Reinforced Plastics/Composites, 2019(8): 53–58. doi: 10.3969/j.issn.1003-0999.2019.08.009
    [7]
    肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应 [J]. 振动与冲击, 2018, 37(15): 110–117. doi: 10.13465/j.cnki.jvs.2018.15.015

    XIAO X L, WANG C J, ZHAO G P. Dynamic responses of carbon fiber composite sandwich panels with aluminum foam core subjected to impact loading [J]. Journal of Vibration and Shock, 2018, 37(15): 110–117. doi: 10.13465/j.cnki.jvs.2018.15.015
    [8]
    程小全, 吴学仁. 复合材料层合板低速冲击损伤容限的改进方法和影响因素 [J]. 高分子材料科学与工程, 2002, 18(3): 20–25. doi: 10.3321/j.issn:1000-7555.2002.03.005

    CHENG X Q, WU X R. Methods for improving damage tolerance of composite laminates after low velocity impact and their influence factors [J]. Polymer Materials Science and Engineering, 2002, 18(3): 20–25. doi: 10.3321/j.issn:1000-7555.2002.03.005
    [9]
    KAFODYA I, XIAN G J, LI H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: water uptake and effects on the mechanical properties [J]. Composites Part B: Engineering, 2015, 70: 138–148. doi: 10.1016/j.compositesb.2014.10.034
    [10]
    荆云娟, 张元, 赵领航, 等. 三维正交机织复合材料力学性能研究进展 [J]. 棉纺织技术, 2017, 45(3): 12–15. doi: 10.3969/j.issn.1001-7415.2017.03.004

    JING Y J, ZHANG Y, ZHAO L H, et al. Research progress on the mechanical property of three-dimensional orthogonality weaving composite material [J]. Cotton Textile Technology, 2017, 45(3): 12–15. doi: 10.3969/j.issn.1001-7415.2017.03.004
    [11]
    BERGERET A, FERRY L, IENNY P. Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6, 6, PET, PBT) in a hygrothermal environment [J]. Polymer Degradation and Stability, 2009, 94(9): 1315–1324. doi: 10.1016/j.polymdegradstab.2009.04.009
    [12]
    李晓骏, 陈新文. 复合材料加速老化条件下的力学性能研究 [J]. 航空材料学报, 2003, 23(Suppl 1): 286. doi: 10.3969/j.issn.1005-5053.2003.z1.073

    LI X J, CHEN X W. Study on aomposites mechanical properties under accelerated ageing conditions [J]. Journal of Aeronautical Materials, 2003, 23(Suppl 1): 286. doi: 10.3969/j.issn.1005-5053.2003.z1.073
    [13]
    YU Y H, LI P, SUI G, et al. Effects of hygrothermal aging on the thermal-mechanical properties of vinylester resin and its pultruded carbon fiber composites [J]. Polymer Composites, 2009, 30(10): 1458–1464. doi: 10.1002/pc.20712
    [14]
    JOHAR M, CHONG W W F, KANG H S, et al. Effects of moisture absorption on the different modes of carbon/epoxy composites delamination [J]. Polymer Degradation and Stability, 2019, 165: 117–125. doi: 10.1016/j.polymdegradstab.2019.05.007
    [15]
    樊威, 李嘉禄. 热氧老化对碳纤维织物增强聚合物基复合材料弯曲性能的影响 [J]. 复合材料学报, 2015, 32(5): 1260–1270. doi: 10.13801/j.cnki.fhc1xb.20141216.002

    FAN W, LI J L. Effects of thermo-oxidative aging on flexural properties of carbon fiber fabric reinforced polymer matrix composites [J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1260–1270. doi: 10.13801/j.cnki.fhc1xb.20141216.002
    [16]
    FAN W, LI J L, ZHENG Y Y, et al. Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites [J]. Polymer Degradation and Stability, 2016, 123: 162–169. doi: 10.1016/j.polymdegradstab.2015.11.016
    [17]
    LEBLANC J, CAVALLARO P, TORRES J, et al. Low temperature effects on the mechanical, fracture, and dynamic behavior of carbon and E-glass epoxy laminates [J]. International Journal of Lightweight Materials and Manufacture, 2020, 3(4): 344–356. doi: 10.1016/j.ijlmm.2020.05.002
    [18]
    隋晓东, 梁成利, 刘文博, 等. 高温老化对碳纤维增强双马来酰亚胺树脂基复合材料力学性能的影响研究 [J]. 纤维复合材料, 2011, 28(1): 21–23. doi: 10.3969/j.issn.1003-6423.2011.01.004

    SUI X D, LIANG C L, LIU W B, et al. Effect of thermal-aging on the mechanical properties of carbon fiber reinforced bis-maleimide composite material [J]. Fiber Composites, 2011, 28(1): 21–23. doi: 10.3969/j.issn.1003-6423.2011.01.004
    [19]
    王登霞, 李晖, 刘亚平, 等. 玻璃纤维/溴化环氧乙烯基酯复合材料的加速光老化研究 [J]. 合成材料老化与应用, 2014, 43(1): 35–40. doi: 10.3969/j.issn.1671-5381.2014.01.011

    WANG D X, LI H, LIU Y P, et al. Accelerated light aging of glass fiber/brominated epoxy vinyl ester composites [J]. Synthetic Materials Aging and Application, 2014, 43(1): 35–40. doi: 10.3969/j.issn.1671-5381.2014.01.011
    [20]
    张晓云, 曹东, 陆峰, 等. T700/5224复合材料在湿热环境和化学介质中的老化行为 [J]. 材料工程, 2016, 44(4): 82–88. doi: 10.11868/j.issn.1001-4381.2016.04.014

    ZHANG X Y, CAO D, LU F, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media [J]. Journal of Materials Engineering, 2016, 44(4): 82–88. doi: 10.11868/j.issn.1001-4381.2016.04.014
    [21]
    JEDIDI J, JACQUEMIN F, VAUTRIN A. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(4): 636–645. doi: 10.1016/j.compositesa.2005.05.007
    [22]
    HADDAR N, KSOURI I, KALLEL T, et al. Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide [J]. Polymer Composites, 2014, 35(3): 501–508. doi: 10.1002/pc.22688
    [23]
    LI X M, WEITSMAN Y J. Sea-water effects on foam-cored composite sandwich lay-ups [J]. Composites Part B: Engineering, 2004, 35(6): 451–459. doi: 10.1016/j.compositesb.2004.04.012
    [24]
    KATZMAN H A, CASTANEDA R M, LEE H S. Moisture diffusion in composite sandwich structures [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 887–892. doi: 10.1016/j.compositesa.2008.01.005
    [25]
    JOSHI N, MULIANA A. Deformation in viscoelastic sandwich composites subject to moisture diffusion [J]. Composite Structures, 2010, 92(2): 254–264. doi: 10.1016/j.compstruct.2009.07.021
    [26]
    王国建, 孙耀宁, 姜宏, 等. 湿热-高温循环老化对环氧乙烯基酯树脂/玻璃纤维复合材料性能影响 [J]. 工程塑料应用, 2020, 48(9): 121–126, 132. doi: 10.3969/j.issn.1001-3539.2020.09.022

    WANG G J, SUN Y N, JIANG H, et al. Influences of cyclic hygrothermal-thermal aging on properties of epoxy vinyl ester resin/glass fiber composites [J]. Engineering Plastics Application, 2020, 48(9): 121–126, 132. doi: 10.3969/j.issn.1001-3539.2020.09.022
    [27]
    LIU J X, HE W T, XIE D, et al. The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures [J]. Composites Part B: Engineering, 2017, 111: 315–331. doi: 10.1016/j.compositesb.2016.11.060
    [28]
    LI H, WANG Z Q, YU Z W, et al. The low velocity impact response of foam core sandwich panels with a shape memory alloy hybrid face-sheet [J]. Materials, 2018, 11(11): 2076. doi: 10.3390/ma11112076
    [29]
    毛南平, 陈中伟, 卞荣, 等. 纤维增强树脂基复合材料芯模拟湿热老化性能 [J]. 工程塑料应用, 2021, 49(1): 114–119. doi: 10.3969/j.issn.1001-3539.2021.01.022

    MAO N P, CHEN Z W, BIAN R, et al. Properties of fiber reinforced resin matrix composite cores simulating wet and hot aging [J]. Engineering Plastics Application, 2021, 49(1): 114–119. doi: 10.3969/j.issn.1001-3539.2021.01.022
    [30]
    AL-SHAMARY A K J, KARAKUZU R, ÖZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations [J]. Journal of Sandwich Structures & Materials, 2016, 18(6): 754–768. doi: 10.1177/1099636216653267
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(1253) PDF downloads(47) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return