Volume 30 Issue 6
Nov 2016
Turn off MathJax
Article Contents
HOU Qi-Yue, JING Qiu-Min, ZHANG Yi, LIU Sheng-Gang, BI Yan, LIU Lei. Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016
Citation: HOU Qi-Yue, JING Qiu-Min, ZHANG Yi, LIU Sheng-Gang, BI Yan, LIU Lei. Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016

Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches

doi: 10.11858/gywlxb.2016.06.016
  • Received Date: 22 Apr 2015
  • Rev Recd Date: 09 Jun 2015
  • With the development of radiography technologies, the synchrotron radiation facilities can emit highly coherent and energy-tunable X-rays with a large flux, making X-ray imaging techniques widely applicable in various fields.The X-ray imaging techniques have evolved from simple radiography to phase-contrast imaging, microscopy, and coherent diffraction imaging, and X-ray diffraction techniques provide structural information for crystal materials with long-range periodicity.In contrast, however, the X-ray imaging techniques are highly visible, and provide direct measurements for all kinds of materials (alloy, amorphous, liquid) from micro-, meso-, to macro-scales.In recent years, the X-ray imaging techniques have been applied in high pressure researches.For example, the equation of state of amorphous materials, the ultrasonic velocities under high pressure, the molten iron transport properties in the Earth's mantle, the strain distribution in the crystalline, and the structural evolution of the phase transformation, can be extracted by X-ray imaging techniques.In this paper, we sum up the studies of the high static pressure research using X-ray imaging techniques, which we expect will facilitate future studies in this area.

     

  • loading
  • [1]
    THURING T, ABIS M, WANG Z, et al.X-ray phase-contrast imaging at 100 keV on a conventional source[J].Sci Rep, 2014, 1(1):1-4. http://europepmc.org/articles/PMC4047533
    [2]
    WILKINS W S, GUREYEV T E, GAO D, et al.Phase-contrast imaging using polychromatic hard X-rays[J].Nature, 1996, 384(28):335-338. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027027199/
    [3]
    WANG Y, YUN W, JACOBSEN C.Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging[J].Nature, 2003, 424(6944):50-53. doi: 10.1038/nature01756
    [4]
    MIAO J, CHARALAMBOUS P, KIRZ J, et al.Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J].Nature, 1999, 400(6742):342-344. doi: 10.1038/22498
    [5]
    TIAN Y, XU B, YU D, et al.Ultrahard nanotwinned cubic boron nitride[J].Nature, 2013, 493(7432):385-388. doi: 10.1038/nature11728
    [6]
    OVSYANNIKOV S, SHCHENNIKOV V.Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe[J].Appl Phys Lett, 2007, 90(12):122103. doi: 10.1063/1.2715123
    [7]
    MURAKAMI M, HIROSE K, KAWAMURA K, et al.Post-perovskite phase transition in MgSiO3[J].Science, 2004, 304(5672):855-858. doi: 10.1126/science.1095932
    [8]
    ZHANG L, MENG Y, YANG W, et al.Disproportionation of (Mg, Fe) SiO3 perovskite in Earth's deep lower mantle[J].Science, 2014, 344(6186):877-882. doi: 10.1126/science.1250274
    [9]
    CHAPMAN H N, BARTY A, MARCHESINI S, et al.High-resolution ab initio three-dimensional X-ray diffraction microscopy[J].J Opt Soc Am A, 2006, 23(5):1179-1200. doi: 10.1364/JOSAA.23.001179
    [10]
    KATAYAMA Y.Density measurements of non-crystalline materials under high pressure and high temperature[J].High Pressure Res, 1996, 14(4/5/6):383-391. doi: 10.1080/08957959608201424
    [11]
    KATAYAMA Y, TSUJI K, CHEN J Q, et al.Density of liquid tellurium under high pressure[J].J Non-Cryst Solids, 1993, 156/157/158:698-690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2393858
    [12]
    SANLOUP C, GUYOT F, GILLET P, et al.Density measurements of liquid Fe-S alloys at high-pressure[J].Geophys Res Lett, 2000, 27(6):811-814. doi: 10.1029/1999GL008431
    [13]
    NISHIDA K, OHTANI E, URAKAWA S, et al.Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption[J].Am Mineral, 2011, 96(5/6):864-868. http://adsabs.harvard.edu/abs/2011AmMin..96..864N
    [14]
    CHEN J, YU T, HUANG S, et al.Compressibility of liquid FeS measured using X-ray radiograph imaging[J].Phys Earth Planet Inter, 2014, 228:294-299. doi: 10.1016/j.pepi.2013.12.012
    [15]
    HONG X, SHEN G, PRAKAPENKA V B, et al.Density measurements of noncrystalline materials at high pressure with diamond anvil cell[J].Rev Sci Instrum, 2007, 78(10):103905. doi: 10.1063/1.2795662
    [16]
    LIU H, WANG L, XIAO X, et al.Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography[J].Proc Natl Acad Sci, 2008, 105(36):13229-13234. doi: 10.1073/pnas.0806857105
    [17]
    XIAO X, LIU H, WANG L, et al.Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques[J].J Synchrotron Rad, 2010, 17(3):360-366. doi: 10.1107/S0909049510008502
    [18]
    WANG Y, UCHIDA T, WESTFERRO F, et al.High-pressure X-ray tomography microscope:synchrotron computed microtomography at high pressure and temperature[J].Rev Sci Instrum, 2005, 76(7):073709. doi: 10.1063/1.1979477
    [19]
    WANG J, YANG W, WANG S, et al.High pressure nano-tomography using an iterative method[J].J Appl Phys, 2012, 111(11):112626. doi: 10.1063/1.4726249
    [20]
    YAVARI A R, MOULEC A L, INOUE A, et al.Excess free volume in metallic glasses measured by X-ray diffraction[J].Acta Mater, 2005, 53(6):1611-1619. doi: 10.1016/j.actamat.2004.12.011
    [21]
    CADIEN A, HU Q Y, MENG Y Q, et al.First-order liquid-liquid phase transition in cerium[J].Phys Rev Lett, 2013, 110(12):105503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bdc897596abed8670ee202c7ae59fc4
    [22]
    MIRACLE D B.A structural model for metallic glasses[J].Nat Mater, 2004, 3(10):697-702. doi: 10.1038/nmat1219
    [23]
    CHENG Y Q, MA E, SHENG H W.Atomic level structure in multicomponent bulk metallic glass[J].Phys Rev Lett, 2009, 102(24):245501. doi: 10.1103/PhysRevLett.102.245501
    [24]
    MEADE C, HEMLEY R J, MAO H K.High-pressure X-ray diffraction of SiO2 glass[J].Phys Rev lett, 1992, 69(9):1387-1390. doi: 10.1103/PhysRevLett.69.1387
    [25]
    ZENG Q, KONO Y, LIN Y, et al.Universal fractional noncubic power law for density of metallic glasses[J].Phys Rev Lett, 2014, 112(18):185502. doi: 10.1103/PhysRevLett.112.185502
    [26]
    LIN Y, ZENG Q, YANG W, et al.Pressure-induced densification in GeO2 glass:a transmission X-ray microscopy study[J].Appl Phys Lett, 2013, 103(26):261909. doi: 10.1063/1.4860993
    [27]
    CHANTLER C T.Theoretical form factor, attenuation, and scattering tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV[J].J Phys Chem Ref Data, 1995, 24(1):71-643. doi: 10.1063/1.555974
    [28]
    PAVESE A.Pressure-volume-temperature equations of state:a comparative study based on numerical simulations[J].Phys Chem Miner, 2002, 29(1):43-51. http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s002690100204&link_type=DOI
    [29]
    ZHU W, GAETANI G A, FUSSEIS F, et al.Microtomography of partially molten rocks:three-dimensional melt distribution in mantle peridotite[J].Science, 2011, 332(6025):88-91. doi: 10.1126/science.1202221
    [30]
    WARK D A, WATSON E B.Grain-scale permeabilities of texturally equilibrated, monomineralic rocks[J].Earth Planet Sci Lett, 1998, 164(3/4):591-605. http://www.sciencedirect.com/science/article/pii/S0012821X98002520
    [31]
    JIANG H, XU R, CHEN C, et al.Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution[J].Phys Rev Lett, 2013, 110(20):205501. doi: 10.1103/PhysRevLett.110.205501
    [32]
    SHI C Y, ZHANG L, YANG W, et al.Formation of an interconnected network of iron melt at Earth's lower mantle conditions[J].Nat Geosci, 2013, 6(11):971-975. doi: 10.1038/ngeo1956
    [33]
    KATAYAMA Y, INAMURA Y, MIZUTANI T, et al.Macroscopic separation of dense fluid phase and liquid phase of phosphorus[J].Science, 2004, 306(5697):848-851. doi: 10.1126/science.1102735
    [34]
    SENDA Y, SHIMOJO F, HOSHINO K.The metal-nonmetal transition of liquid phosphorus by ab initio molecular-dynamics simulations[J].J Phys Condens Matter, 2002, 14(14):3715-3723. doi: 10.1088/0953-8984/14/14/304
    [35]
    HOHL D, JONES R O.Polymerization in liquid phosphorus:simulation of a phase transition[J].Phys Rev B, 1994, 50(23):17047. doi: 10.1103/PhysRevB.50.17047
    [36]
    AZUMA M, CHEN W, SEKI H, et al.Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer[J].Nat Commun, 2011, 2(6):347-351. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3156814
    [37]
    LIU Y, WANG J, AZUMA M, et al.Five-dimensional visualization of phase transition in BiNiO3 under high pressure[J].Appl Phys Lett, 2014, 104(4):043108. doi: 10.1063/1.4863229
    [38]
    MEIRER F, CABANA J, LIU Y, et al.Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy[J].J Synchrotron Rad, 2011, 18(5):773-781. doi: 10.1107/S0909049511019364
    [39]
    LI J, CAO Y, XIA C, et al.Similarity of wet granular packing to gels[J].Nat Commun, 2014, 5(9):1-7. http://www.ncbi.nlm.nih.gov/pubmed/25247441
    [40]
    ZACCARELLI E, LU P J, CIULLA F, et al.Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures[J].J Phys Condens Matter, 2008, 20(49):494242. doi: 10.1088/0953-8984/20/49/494242
    [41]
    ROYALL C P, WILLIAMS S R, OHTSUKA T, et al.Direct observation of a local structural mechanism for dynamic arrest[J].Nat Mater, 2008, 7(7):556-561. doi: 10.1038/nmat2219
    [42]
    URAKAWA S, TERASAKI H, FUNAKOSHI K, et al.Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7 GPa[J].Am Mineral, 2001, 86(4):578-582.
    [43]
    KONO Y, PARK C, KENNEY-BENSON C, et al.Toward comprehensive studies of liquids at high pressures and high temperatures:combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell[J].Phys Earth Planet Inter, 2014, 228:269-280. doi: 10.1016/j.pepi.2013.09.006
    [44]
    FUNAKOSHI K, NOZAWA A.Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique[J].Rev Sci Instrum, 2012, 83(10):103908. doi: 10.1063/1.4757570
    [45]
    LI B, KUNG J, LIEBERMANN R C.Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus[J].Phys Earth Planet Inter, 2004, 143/144:559-574. doi: 10.1016/j.pepi.2003.09.020
    [46]
    LARSON B C, YANG W, ICE G E, et al.Three-dimensional X-ray structural microscopy with submicrometre resolution[J].Nature, 2002, 415(6874):887-890. doi: 10.1038/415887a
    [47]
    YANG W, HUANG X, HARDER R, et al.Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure[J].Nat Commun, 2009, 8(4):291-298. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3644065
    [48]
    SHPYRKO O G, ISAACS E D, LOGAN J M, et al.Direct measurement of antiferromagnetic domain fluctuations[J].Nature, 2007, 447(3):68-71. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0702265
    [49]
    TRIGO M, FUCHS M, CHEN J, et al.Fourier-transform inelastic X-ray scattering from time-and momentum-dependent phonon-phonon correlations[J].Nat Phys, 2013, 9(12):790-794. doi: 10.1038/nphys2788
    [50]
    XU J A, MAO H K, HEMLEY R J, et al.The moissanite anvil cell:a new tool for high-pressure research[J].J Phys Condens Matter, 2002, 14(44):11543-11548. doi: 10.1088/0953-8984/14/44/513
    [51]
    MAO H K, XU J, STRUZHKIN V V, et al.Phonon density of states of iron up to 153 gigapascals[J].Science, 2001, 292(5518):914-916. doi: 10.1126/science.1057670
    [52]
    URAKAWA S, TERASAKI H P, FUNAKOSHI K, et al.Development of high pressure apparatus for X-ray microtomography at Spring-8[J].J Phys Conf Ser, 2010, 215(1):012026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000690710
    [53]
    MIAO J, FORSTER F, LEVI O.Equally sloped tomography with oversampling reconstruction[J].Phys Rev B, 2005, 72(5):052103. doi: 10.1103/PhysRevB.72.052103
    [54]
    FAHIMIAN B, MAO Y, CLOETENS P, et al.Low-dose X-ray phase-contrast and absorption CT using equally sloped tomography[J].Phys Med Biol, 2010, 55(18):5383-5400. doi: 10.1088/0031-9155/55/18/008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(7914) PDF downloads(121) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return