Volume 29 Issue 1
Apr 2015
Turn off MathJax
Article Contents
LI Ming-Rui, ZHOU Gang, LI Zhi-Kang, GENG Bao-Gang, FAN Ru-Yu, ZHAO Nan. Single Shock Compression of Fluid Deuterium by QMC Simulation[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001
Citation: LI Ming-Rui, ZHOU Gang, LI Zhi-Kang, GENG Bao-Gang, FAN Ru-Yu, ZHAO Nan. Single Shock Compression of Fluid Deuterium by QMC Simulation[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001

Single Shock Compression of Fluid Deuterium by QMC Simulation

doi: 10.11858/gywlxb.2015.01.001
  • Received Date: 20 Mar 2013
  • Rev Recd Date: 07 May 2014
  • Since liquid hydrogen has some complex physical behaviors in a relatively wide range of pressure and temperature, one more accurate and appropriate ab-initio simulation method is urgently required.We used the Coupled Electron-Ion Monte Carlo (CEIMC) method to simulate the single shock compression experiment of deuterium, and systematically studied its thermodynamic properties under high pressure.It is shown that the liquid deuterium principle Hugoniot has a maximum compression ratio of 4.48 at about 50.3 GPa, but the compression ratio does not increase gradually around 110 GPa.By utilizing an appropriate aluminum impedance match model, we have established the correlations between the states of compressed deuterium and the shock or particle velocities in aluminum taken before the shock wave crossing the Al-D2 interface, and contemporarily summarized the physical processes of liquid deuterium under single shock compression in detail.The calculation results are not only in very good agreement with the existing experiments via different high-pressure generating technologies, but also consistent with the data above 100 GPa corrected from the Omega Laser driven experiment.Therefore, the CEIMC method combined with the wave function based on the resonant valence bond theory is very suitable for the simulations of shocked liquid deuterium.

     

  • loading
  • [1]
    Morales M A, Pierleoni C, Ceperley M D. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81(2): 021202. http://www.ncbi.nlm.nih.gov/pubmed/20365556
    [2]
    Nellis W J, Weir S T, Mitchell A C. Minimum metallic conductivity of fluid hydrogen at 140 GPa(1.4 Mbar)[J]. Phys Rev B, 1998, 59(5): 3434-3449.
    [3]
    da Silva L B, Celliers P M, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa(2 Mbar)[J]. Phys Rev Lett, 1997, 78(3): 483-486. doi: 10.1103/PhysRevLett.78.483
    [4]
    Collins G W, da Silva L B, Celliers P, et al. Measurements of the equation of state of deuterium at the fluid insulator-metal transition[J]. Science, 1998, 281(1): 1178-1181. http://www.ncbi.nlm.nih.gov/pubmed/9712579
    [5]
    Collins G W, Celliers P M, da Silva L B, et al. Equation of state measurements of hydrogen isotopes on Nova[J]. Phys Plasmas, 1998, 5(5): 1864-1869. doi: 10.1063/1.872857
    [6]
    Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79(1): 014112. doi: 10.1103/PhysRevB.79.014112
    [7]
    Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87(22): 225501. doi: 10.1103/PhysRevLett.87.225501
    [8]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
    [9]
    Belov S I, Boriskov G V, Bykov A I, et al. Shock compression of solid deuterium[J]. JETP Lett, 2002, 76(7): 433-435. doi: 10.1134/1.1528696
    [10]
    Boriskov G V, Bykov A I, Ilkaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71(9): 092104. doi: 10.1103/PhysRevB.71.092104
    [11]
    Grishechkin S K, Gruzdev S K, Gryaznov V K, et al. Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium[J]. JETP Lett, 2004, 80(6): 398-404. doi: 10.1134/1.1830656
    [12]
    Kerley G I. Equation of state and phase diagram of dense hydrogen[J]. Phys Earth Planet Inter, 1972, 6(1): 78-82. http://www.sciencedirect.com/science/article/pii/0031920172900362
    [13]
    Ross M. Linear-mixing model for shock-compressed liquid deuterium[J]. Phys Rev B, 1997, 58(2): 669-677. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000058000002000669000001&idtype=cvips&gifs=Yes
    [14]
    Saumon D, Chabrier G. Fluid hydrogen at high density: Pressure ionization[J]. Phys Rev A, 1992, 46(4): 2084-2100. doi: 10.1103/PhysRevA.46.2084
    [15]
    田春玲, 经福谦, 顾云军, 等.高温高密度氢(氘)的物态方程——离解效应研究[J].高压物理学报, 2007, 21(1): 8-14. http://d.wanfangdata.com.cn/Periodical/gywlxb200701002

    Tian C L, Jing F Q, Gu Y J, et al. Equation of state for fluid hydrogen and deuterium: Dissociation effects studies[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 8-14. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gywlxb200701002
    [16]
    Lenosky T J, Bickham S R, Kress J D, et al. Density-functional calculation of the Hugoniot of shocked liquid deuterium[J]. Phys Rev B, 2000, 61(1): 1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000061000001000001000001&idtype=cvips&gifs=Yes
    [17]
    Desjarlais M P. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing[J]. Phys Rev B, 2003, 68(6): 064204. doi: 10.1103/PhysRevB.68.064204
    [18]
    Lenosky T J, Kress J D, Collins L A. Molecular-dynamics modeling of the hugoniot of shocked liquid deuterium[J]. Phys Rev B, 1997, 56(9): 5164-5169. doi: 10.1103/PhysRevB.56.5164
    [19]
    Militzer B, Ceperley D M. Path integral monte carlo calculation of the deuterium hugoniot[J]. Phys Rev Lett, 2000, 85(9): 1890-1893. doi: 10.1103/PhysRevLett.85.1890
    [20]
    Casula M, Attaccalite C, Sorella S. Correlated geminal wave function for molecules: An efficient resonating valence bond approach[J]. J Chem Phys, 2004, 121(15): 7110-7126. doi: 10.1063/1.1794632
    [21]
    Holzmann M, Ceperley D M, Pierleoni C, et al. Backflow correlations for the electron gas and metallic hydrogen[J]. Phys Rev E, 2003, 68(4): 046707. doi: 10.1103/PhysRevE.68.046707
    [22]
    Silvera I F, Goldman V V. The isotropic intermolecular potential for H2 and D2 in the solid and gas phase[J]. J Chem Phys, 1987, 69(9): 4209-4213. doi: 10.1063/1.437103
    [23]
    Kolos W, Wolniewicz L. Potential-energy curves for the, and C1Πu states of the hydrogen molecule[J]. J Chem Phys, 1965, 43(7): 2429-2441. doi: 10.1063/1.1697142
    [24]
    Collins L A, Bickham S R, Kress J D, et al. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63(18): 184110. doi: 10.1103/PhysRevB.63.184110
    [25]
    Nellis W J, Mitchell A C, Thiel V M, et al. Equation of state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa(20-760 kbar)[J]. J Chem Phys, 1983, 79(3): 1480-1486. doi: 10.1063/1.445938
    [26]
    Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard[J]. Phys Rev Lett, 2009, 130(22): 225501. http://www.ncbi.nlm.nih.gov/pubmed/20366104
    [27]
    Bonev S A, Militzer B, Galli G. Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments[J]. Phys Rev B, 2004, 69(1): 014101. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000069000001014101000001&idtype=cvips&gifs=Yes
    [28]
    Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(6568) PDF downloads(239) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return