| Citation: | CHEN Tian-Wu, LUO Ning, YAN Hong-Hao, LIU Kai-Xin. Numerical Analysis of the Formation of TiO2 Nanoparticles in Gas Phase Explosion Flow Field[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 729-735. doi: 10.11858/gywlxb.2014.06.014 |
| [1] |
Gelbard F, Seinfeld J H. Numerical solution of the dynamic equation for particulate systems[J]. J Comput Phys, 1978, 28(3): 357-375. doi: 10.1016/0021-9991(78)90058-X
|
| [2] |
Wu J J, Nguyen H V, Flagan R C, et al. Evaluation and control of particle properties in aerosol reactors[J]. Aiche J, 1988, 34(8): 1249-1256. doi: 10.1002/aic.690340803
|
| [3] |
Kruis F E, Kusters K A, Pratsinis S E, et al. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering[J]. Aerosol Sci Techno, 1993, 19(4): 514-526. doi: 10.1080/02786829308959656
|
| [4] |
Appel J, Bockhorn H, Wulkow M. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames[J]. Chemosphere, 2001, 42(5/6/7): 635-645.
|
| [5] |
Kumar J, Warnecke G. A note on moment preservation of finite volume schemes for solving growth and aggregation population balance equations[J]. SIAM J Sci Comput, 2010, 32(2): 703-713. doi: 10.1137/090757356
|
| [6] |
Al Zaitone B, Schmid H J, Peukert W. Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth[J]. J Aerosol Sci, 2009, 40(11): 950-964. doi: 10.1016/j.jaerosci.2009.08.007
|
| [7] |
欧阳欣, 闫鸿浩, 刘津开, 等.纳米TiO2粉体的气相爆轰制备[J].高压物理学报, 2007, 21(4): 379-382.
Ouyang X, Yan H H, Liu J K, et al. Nano-titanium dioxide synthesis using gaseous detonation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 379-382. (in Chinese)
|
| [8] |
Johannessen T, Pratsinis S E, Livbjerg H. Computational fluid-particle dynamics for the flame synthesis of alumina particles[J]. Chem Eng Sci, 2000, 55(1): 177-191.
|
| [9] |
陈石, 谢洪勇, 王利希, 等.燃烧法合成TiO2纳米颗粒的数值模拟[J].大连理工大学学报, 2005, 45(3): 340-345.
Chen S, Xie H Y, Wang X L, et al. Simulation of titania nanoparticle synthesis in flame[J]. Journal of Dalian University of Technology, 2005, 45(3): 340-345. (in Chinese)
|
| [10] |
Koch W, Friedlander S K. The effect of particle coalescence on the surface area of a coagulating aerosol[J]. J Colloid Interface Sci[J]. 1990, 140(2): 419-427.
|
| [11] |
Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO2 crystallites in aerosol reactor[J]. Aiche J, 1991, 37(3): 347-359. doi: 10.1002/aic.690370305
|
| [12] |
Qu Y D, Li X J, Zhao Z, et al. Synthesis of Sr2Al24: Er2+, Dy3+ Nanometer phosphors by detonation and combustion method[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 175-180.
|
| [13] |
Luo N, Li X J, Fei H L, et al. Detonation synthesis of carbon-encapsulated nickel nanoparticles[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 111-117.
|
| [14] |
闫鸿浩, 席树雄, 李晓杰, 等.不同前驱体相对摩尔量对气相爆燃制备纳米SiO2的影响[J].高压物理学报, 2012, 26(6): 627-631.
Yan H H, Xi S X, Li X J, et al. Study on the influence of gaseous deflagration preparing nano-SiO2 with different relative mole amounts of precursor[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 627-631. (in Chinese)
|
| [15] |
Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with X-ray diffratometer[J]. Anal Chem, 1957, 29(5): 760-762. doi: 10.1021/ac60125a006
|
| [16] |
奥尔连科.爆炸物理学[M].孙承纬, 译.第3版.北京: 科学出版社, 2011.
Орленко Л П. Explosion Physics[M]. Translated by Sun C W. 3rd ed. Beijing: Science Press, 2011. (in Chinese)
|
| [17] |
欧阳欣.气相爆燃和爆轰法制备纳米TiO2颗粒研究[D].大连: 大连理工大学, 2009.
Ouyang X. Research synthesis of titanium dioixde nanoparticles by gas-phase deflagration and detonation method[D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
|