Volume 28 Issue 6
Mar 2015
Turn off MathJax
Article Contents
SHI Ru-Chao, ZHANG Ya-Jun, XU Sheng-Li. Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009
Citation: SHI Ru-Chao, ZHANG Ya-Jun, XU Sheng-Li. Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 699-704. doi: 10.11858/gywlxb.2014.06.009

Simulation of Expansion of High Pressure Bubble under Water in Complex Calculation Region using NGFM in Cartesian Coordinate System

doi: 10.11858/gywlxb.2014.06.009
  • Received Date: 28 Jan 2013
  • Rev Recd Date: 26 Apr 2013
  • We adopted a new version of ghost fluid method (NGFM) to treat the wall boundary in a complex calculation region in Cartesian coordinate system, and real ghost fluid method (RGFM) to predict the flow states at grid nodes just next to the gas-liquid interface.Flow field was solved by Euler equation with 5th-order WENO spatial discretization and 2nd-order Runge-Kutta (R-K) time discretization.We used the level set method to keep track of gas-liquid interface.Level set function was discretized by 5th-order Hamilton-Jacobi WENO and 3rd-order R-K method.We verified that NGFM was easy to extend and could be applied to treat complex wall boundary in Cartesian grid by comparing with results in arbitrary coordinate system.We carried out pressure contours, the change process of bubble shape and pressure history at some given points.The numerical results demonstrate that the expansion of high pressure bubble is restricted by the reflected shock wave from the wall.It is also shown that the reflection of strong shock wave from wall can lead to extensive cavitation flow.

     

  • loading
  • [1]
    Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface[J]. J Fluid Mech, 1981, 111: 123-140. doi: 10.1017/S0022112081002322
    [2]
    Pearson A, Cox E, Blake J R, et al. Bubble interactions near a free surface[J]. Eng Anal Bound Elem, 2004, 28(4): 295-313. doi: 10.1016/S0955-7997(03)00079-1
    [3]
    Liu M B, Liu C R, Lam K Y. A one dimensional mesh free particle formulation for simulating shock waves[J]. Shock Waves, 2003, 13: 201-211. doi: 10.1007/s00193-003-0207-0
    [4]
    Liu M B, Liu C R, Zong Z, et al. Numerical simulation of underwater explosion by SPH[J]. Advan Comput Eng Sci, 2000: 1475-1480.
    [5]
    Liu M B, Liu C R, Zong Z, et al. Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology[J]. Comput Fluids, 2003, 32(3): 305-322. http://www.sciencedirect.com/science/article/pii/S0045793001001050
    [6]
    Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading, AD-A178096[R]. Nova Scotia: Defence Research Establishment Atlantic Dartmouth, 1986.
    [7]
    Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. J Fluid Struct, 2005, 20(3): 359-372. doi: 10.1016/j.jfluidstructs.2004.08.003
    [8]
    Zhang A M, Yang W S, Huang C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Comput Fluids, 2013, 71: 169-178. doi: 10.1016/j.compfluid.2012.10.012
    [9]
    Fedkiw R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. J Comput Phys, 2002, 175(1): 200-224. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1006/jcph.2001.6935&rfr_id=trans/tg/2009/03/ttg2009030493.htm
    [10]
    Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. J Sci Comput, 2005, 28(1): 278-302. http://dl.acm.org/citation.cfm?id=1122832
    [11]
    Wardlaw A B Jr. Underwater explosion test cases, IHTR-2069[R]. Maryland: Naval Surface Warfare Center Indian Head Division, 1998.
    [12]
    Liu T G, Khoo B C, Xie W F. Isentropic one-fluid modelling of unsteady cavitating flow[J]. J Comput Phys, 2004, 201(1): 80-108. http://www.ams.org/mathscinet-getitem?mr=2098854
    [13]
    Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys, 1988, 79(1): 12-49. http://www.ams.org/mathscinet-getitem?mr=965860
    [14]
    Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. J Comput Phys, 1994, 114(1): 146-159.
    [15]
    Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. J Comput Phys, 2003, 190(2): 651-681. http://www.sciencedirect.com/science/article/pii/S0021999103003012
    [16]
    Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. J Comput Phys, 1999, 148(1): 2-22. http://www.sciencedirect.com/science/article/pii/s0021999198960909
    [17]
    Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report[R]. Rhode Island: Brown University, 1997.
    [18]
    Jiang G S, Peng D. Weighted ENO schemes for Hamilton Jacobi equations[J]. SIAM J Sci Comput, 2000, 21(6): 2126-2143. doi: 10.1137/S106482759732455X
    [19]
    Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J Comput Phys, 1988, 77(2): 439-471.
    [20]
    曹乐.利用Level set方法捕捉气、水界面的三维数值研究[D].合肥: 中国科学技术大学, 2009: 20-21.

    Cao L. Three-dimensional computations on capturing of gas-water interface by level set method[D]. Hefei: University of Science and Technology of China, 2009: 20-21. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(6941) PDF downloads(259) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return