Volume 28 Issue 4
Mar 2015
Turn off MathJax
Article Contents
CAO Wei, HE Zhong-Qi, CHEN Wang-Hua. Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009
Citation: CAO Wei, HE Zhong-Qi, CHEN Wang-Hua. Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009

Experimental Research and Numerical Simulation of Afterburning Reaction of TNT Explosive by Underwater Explosion

doi: 10.11858/gywlxb.2014.04.009
  • Received Date: 20 Aug 2012
  • Rev Recd Date: 15 Oct 2012
  • To explore the afterburning reaction of TNT explosive, the underwater explosion method and an experimental device designed to enhance the afterburning reaction of explosives were used to investigate the energy output structure, and the afterburning reaction energy in different ambient atmosphere was calculated.The experimental data of afterburning reaction was simulated by using Miller energy release model.The results show that the experimental device filled with oxygen or air can increase the afterburning reaction energy output of TNT explosive significantly.The measured afterburning reaction energy increases with the increase of the content of oxygen, and in the studied range, the afterburning reaction energy reaches the maximum value of 4.90 kJ/g, but does not reach the theoretically maximum value.The computed shock wave pressure histories agree with the measured ones well, which indicates that the Miller energy release model is practicable.

     

  • loading
  • [1]
    Ornellas D L. Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982, UCRL-52821[R]. Livermore, USA: Lawrence Livermore National Laboratory, 1982.
    [2]
    Cooper P W. Explosives Engineering[M]. New York, USA: Wiley-VCH, 1996: 132-133.
    [3]
    Needham C E. Blast Waves[M]. Heidelberg, Germany: Springer-Verlag, 2010: 303-312.
    [4]
    Wolański P, Gut Z, Trzciński W A, et al. Visualization of turbulent combustion of TNT detonation products in a steel vessel[J]. Shock Waves, 2000, 10(2): 127-136.
    [5]
    Kuhl A L, Reichenbach H. Combustion effects in confined explosions[J]. Proc Combust Inst, 2009, 32(2): 2291-2298. doi: 10.1016/j.proci.2008.05.001
    [6]
    Kuhl A L, Bell J B, Beckner V E, et al. Gasdynamic model of turbulent combustion in TNT explosions[J]. Proc Combust Inst, 2011, 33(2): 2177-2185. doi: 10.1016/j.proci.2010.07.085
    [7]
    孙华, 郭志军.高能聚黑类传爆药在水中兵器中应用研究[J].装备指挥技术学院学报, 2010, 21(3): 111-113.

    Sun H, Guo Z J. Study on the application of high energy hexogen booster in undersea weapons[J]. Journal of the Academy of Equipment Command and Technology, 2010, 21(3): 111-113. (in Chinese)
    [8]
    Kiciński W, Trzciński W A. Calorimetry studies of explosion heat of non-ideal explosives[J]. J Therm Anal Calorimetry, 2009, 96(2): 623-630. doi: 10.1007/s10973-008-9100-5
    [9]
    Bjarnholt G, Holmberg R. Explosive expansion waves in underwater detonation[C]//Proceedings of the Sixth International Symposium on Detonation. San Diego, USA, 1976: 540-550.
    [10]
    Cole R H. Underwater Explosions[M]. Princeton, USA: Princeton University Press, 1948.
    [11]
    丁长兴, 崔应焆.用最小二乘法求气泡能的固有常数——兼议水下测试炸药能的精确计算[J].爆破器材, 1994(3): 1-7.

    Ding C X, Cui Y J. Determination of intrinsic constants of bubble energy with least square method: Accurate calculations of explosive energy measured underwater[J]. Explosive Materials, 1994(3): 1-7. (in Chinese)
    [12]
    史锐, 徐更光, 刘德润, 等.炸药爆炸能量的水中测试与分析[J].火炸药学报, 2008, 31(4): 1-5.

    Shi R, Xu G G, Liu D R, et al. Underwater test and analysis for explosion energy of explosives[J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 1-5. (in Chinese)
    [13]
    孙锦山, 朱建士.理论爆轰物理[M].北京: 国防工业出版社, 1995: 360-368.

    Sun J S, Zhu J S. Theory of Detonation Physics[M]. Beijing: National Defense Industry Press, 1995: 360-368. (in Chinese)
    [14]
    Lee E L, Horning H C, Kury J W. Adiabatic expansion of high explosive detonation products, UCRL-50422[R]. California, USA: University of California, 1968.
    [15]
    Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[J]. MRS Proc, 1996, 418: 413-420.
    [16]
    辛春亮, 徐更光, 刘科种, 等.含铝炸药Miller能量释放模型的应用[J].含能材料, 2008, 16(4): 436-440.

    Xin C L, Xu G G, Liu K Z, et al. Application of Miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4): 436-440. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(7539) PDF downloads(448) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return