Volume 27 Issue 2
Mar 2015
Turn off MathJax
Article Contents
JIN Xi-Lian, CUI Tian. Structures and Properties in Typical Small-Molecule Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004
Citation: JIN Xi-Lian, CUI Tian. Structures and Properties in Typical Small-Molecule Crystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004

Structures and Properties in Typical Small-Molecule Crystals under High Pressure

doi: 10.11858/gywlxb.2013.02.004
  • Received Date: 05 Apr 2013
  • Rev Recd Date: 05 Apr 2013
  • Issue Publish Date: 15 Apr 2013
  • High pressure can cause rearrangement of atoms in microstructure, and arouses reconfigurations of electronic states, which often brings new materials and new properties. The rich and colorful new phenomena and properties in the typical molecule system have been observed under high pressure. Studies of these new phases and behaviors in typical molecular system under high pressure are very important and significative. Two types of substance, i. e. elementary crystals and small-molecule compounds, are investigated thoroughly on structures and properties under high pressure, and demonstrate various features. In the elementary crystals, such as pressure-induced phase transition and metallization in I2 (solid iodine) and N2 (polymeric nitrogen), and in the small-molecule compounds, such as the hydrogen-bond and halogen-bond interactions in crystalline iodoform and bromoform under high pressure, the effects from dihydrogen bonds in ammonia borane which determining the complex dynamics behavior of rotations of the NH3 and BH3 groups under high pressure, etc. are discussed deeply. The distinct behaviors of molecular dissociation, reconstruction of crystal structures, and pressure-induced metallization in the typical small-molecule system under high pressure are very different from the ones at ambient conditions. Exploration of the typical small-molecule crystals under high pressure provides an important way to discover the new structures, new materials and new physical phenomena and properties.

     

  • loading
  • Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen [J]. J Chem Phys, 1935, 3(12): 764.
    Wang X L, Tian F B, Wang L C, et al. Structural stability of polymeric nitrogen: A first-principles investigation [J]. J Chem Phys, 2010, 132(2): 024502.
    Bao G, Duan D F, Zhou D W, et al. A new high-pressure polar phase of crystalline bromoform: A first-principles study [J]. J Phys Chem B, 2010, 114(44): 13933-13939.
    Bao G, Duan D, Tian F, et al. Structural, electronic, and optical properties of crystalline iodoform under high pressure: A first-principles study [J]. J Chem Phys, 2011, 134(3): 034508.
    Fan J, Bao K, Jin X L, et al. How to get superhard MnB2: A first-principles study [J]. J Mater Chem, 2012, 22(34): 17630-17635.
    Wang L C, Bao K, Meng X, et al. Structural and dynamical properties of solid ammonia borane under high pressure [J]. J Chem Phys, 2011, 134(2): 024517.
    Zeng Q F, He Z, San X J, et al. A new phase of solid iodine with different molecular covalent bonds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4999-5001.
    Buzea C, Yamashita T. Review of the superconducting properties of MgB2 [J]. Supercond Sci Technol, 2001, 14(11): R115.
    Takemura K, Minomura S, Shimomura O, et al. Observation of molecular dissociation of iodine at high pressure by X-ray diffraction [J]. Phys Rev Lett, 1980, 45(23): 1881-1884.
    Fujii Y, Hase K, Ohishi Y, et al. Pressure-induced monatomic tetragonal phase of metallic iodine [J]. Solid State Commun, 1986, 59(2): 85-89.
    Fujii Y, Hase K, Hamaya N, et al. Pressure-induced face-centered-cubic phase of monatomic metallic iodine [J]. Phys Rev Lett, 1987, 58(8): 796-799.
    Hu J Z, Hemley J, Mao H K, et al. Optical, X-ray, and band-structure studies of iodine at pressures of several megabars [J]. Phys Rev B, 1994, 49(6): 3725-3733.
    Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
    Kume T, Hiraoka T, Ohya Y, et al. High pressure Raman study of bromine and iodine: Soft phonon in the incommensurate phase [J]. Phys Rev Lett, 2005, 94(6): 065506.
    Sakamoto H, Shirai M, Suzuki N. Pressure effects on electronic structure and electron-lattice interaction of cubic phase of solid iodine [J]. J Phys Soc Jpn 1995, 64: 3860-3870.
    Sakamoto H, Oda T, Shirai M, et al. Application of Frozen-phonon method to lattice dynamics in FCC solid iodine [J]. J Phys Soc Jpn, 1996, 65: 489-495.
    Maheswari S U, Nagara H, Kusakabe K, et al. Ab-initio calculations of lattice dynamics and superconductivity in FCC lithium and iodine and BCC tellurium [J]. J Phys Soc Jpn, 2005, 74(12): 3227-3235.
    Shimizu K, Yamauchi T, Tamitani N, et al. The pressure-induced superconductivity of iodine [J]. J Supercond, 1994, 7(6): 921.
    Duan D F, Jin X L, Ma Y M, et al. Effect of nonhydrostatic pressure on superconductivity of monatomic iodine: An ab initio study [J]. Phys Rev B, 2009, 79(6): 064518.
    McMahan A K, LeSar R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Phys Rev Lett, 1985, 54(17): 1929-1932.
    Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Mater, 2004, 3: 558-563.
    Zahariev F, Hu A, Hooper J, et al. Layered single-bonded nonmolecular phase of nitrogen from first-principles simulation [J]. Phys Rev B, 2005, 72(21): 214108.
    Ludwig S, Osheroff D D. Field-induced structural aging in glasses at ultralow temperatures [J]. Phys Rev Lett, 2003, 91(10): 105501.
    Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
    Oganov A R, Glass C W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications [J]. J Chem Phys, 2006, 124(24): 244704.
    Zahariev F, Hooper J, Alavi S, et al. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations [J]. Phys Rev B, 2007, 75(14): 140101(R).
    Alemany M M G, Martins J L. Density-functional study of nonmolecular phases of nitrogen: Metastable phase at low pressure [J]. Phys Rev B, 2003, 68: 024110(1)-024110(4).
    Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
    Wang X L, Tian F B, Wang L, et al. Predicted novel metallic metastable phases of polymeric nitrogen at high pressures [J]. New J Phys, 2013, 15: 013010.
    Curtin D Y, Paul I C. Chemical consequences of the polar axis in organic solid-state chemistry [J]. Chem Rev, 1981, 81(6): 525-541.
    Zhang H, Wang X M, Zhang K C, et al. Functional crystals: Search criteria and design principles [J]. J Solid State Chem, 2000, 152(1): 191-198.
    Kenichi T, Kyoko S, Hiroshi F, et al. Modulated structure of solid iodine during its molecular dissociation under high pressure [J]. Nature, 2003, 423: 971-974.
    Duan D F, Liu Y H, Ma Y M, et al. Ab initio studies of solid bromine under high pressure [J]. Phys Rev B, 2007, 76(10): 104113.
    Dziubek K F, Katrusiak A. Polar symmetry in new high-pressure phases of chloroform and bromoform [J]. J Phys Chem B, 2008, 112(38): 12001-12009.
    Liu D, Lei W W, Wang K, et al. Compression and Probing C-HI hydrogen bonds of iodoform under high pressure by X-ray diffraction and raman scattering [J]. J Phys Chem B, 2009, 13(21): 7430-7434.
    Wang K, Duan D F, Wang R, et al. Pressure-induced phase transition in hydrogen-bonded supramolecular adduct formed by cyanuric acid and melamine [J]. J Phys Chem B, 2009, 113(44): 14719-14724.
    Wang L C, Tian F B, Feng W X, et al. Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: Ab initio molecular dynamics study [J]. J Chem Phys, 2010, 132(16): 164506.
    Berski S, Ciunik Z, Drabent K, et al. Dominant role of C-BrN halogen bond in molecular self-organization. Crystallographic and quantum-chemical study of schiff-base-containing triazoles [J]. J Phys Chem B, 2004, 108(33): 12327-12332.
    Awwadi F F, Willett R D, Peterson K A, et al. The nature of halogenhalogen synthons: Crystallographic and theoretical studies [J]. Chemistry-Europ J, 2006, 12(35): 8952-8960.
    Samoc A, Samoc M, Giermanska J, et al. Thermally stimulated depolarisation study of structural disorder in iodoform single crystals [J]. J Phys D: Appl Phys, 1985, 18(12): 2529.
    Calvert J G, Pitts J N. Experimental methods in photochemistry [C]//Photochemistry. New York: John Wiley Sons, Inc, 1966: 686-798.
    Samoс A, Samoс M, Sworakowski J, et al. Photoconductivity of crystalline iodoform I [J]. Molecul Crystals Liquid Crys, 1981, 78(1): 1-13.
    Bowden M E, Gainsford G J, Robinson W T. Room-temperature structure of ammonia borane [J]. Aust J Chem, 2007, 60(3): 149-153. [44] Yang J B, Lamsal J, Cai Q, et al. Structural evolution of ammonia borane for hydrogen storage [J]. Appl Phys Lett, 2008, 92(9): 091916 (1)-091916(3).
    Hess N J, Schenter G K, Hartman M R, et al. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K [J]. J Phys Chem A, 2009, 113(19): 5723-5735.
    Klooster W T, Koetzle T F, Siegbahn P E M, et al. Study of the N-HH-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction [J]. J Am Chem Soc, 1999, 121(27): 6337-6343.
    Filinchuk Y, Nevidomskyy A H, Chernyshov D, et al. High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations [J]. Phys Rev B, 2009, 79(21): 214111.
    Lin Y, Mao W L, Drozd V, et al. Raman spectroscopy study of ammonia borane at high pressure [J]. J Chem Phys, 2008, 129(23): 234509.
    Suenram R D, Lovas F J. Microwave spectrum, torsional barrier, and structure of BH3NH3 [J]. J Chem Phys, 1983, 78(1): 167.
    Parvanov V M, Schenter G K, Hess N J, et al. Materials for hydrogen storage: Structure and dynamics of borane ammonia complex [J]. Dalton Trans, 2008, 33: 4514-4522.
    Hessa N J, Hartmanb M R, Brownc Craig M, et al. Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane [J]. Chem Phys Lett, 2008, 459: 85-88.
    Penner G H, Chang Y C P, Hutzal J, et al. A deuterium NMR spectroscopic study of solid BH3NH3 [J]. Inorg Chem, 1999, 38(12): 2868-2873.
    Gunaydin-Sen O, Achey R, Dalal N S, et al. High resolution 15N NMR of the 225 K phase transition of ammonia borane (NH3BH3): Mixed order-disorder and displacive behavior [J]. J Phys Chem B, 2007, 111(4): 677-681.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7096) PDF downloads(593) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return