Volume 27 Issue 2
Mar 2015
Turn off MathJax
Article Contents
HE Hong-Liang. Physical Criterion of Dynamic Tensile Fracture[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153-161. doi: 10.11858/gywlxb.2013.02.001
Citation: HE Hong-Liang. Physical Criterion of Dynamic Tensile Fracture[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153-161. doi: 10.11858/gywlxb.2013.02.001

Physical Criterion of Dynamic Tensile Fracture

doi: 10.11858/gywlxb.2013.02.001
  • Received Date: 13 Mar 2013
  • Rev Recd Date: 13 Mar 2013
  • Issue Publish Date: 15 Apr 2013
  • A physical criterion of dynamic tensile fracture has been introduced, based on the knowledge of the micro-mechanism and the measurement of the damage evolution. The physical criterion has suggested two critical damage parameters, named as the critical void coalescence damage Dl and the critical fracturing damage Df. These two parameters are associated with a damage function model and a percolation-softening function, by which the fracture process is characterized as that the damage slowly increases in a linear manner from the initial state (D=D0) to the void linkage state (D=Dl), then changes to a nonlinear growth and rapidly approaches to the critical fracturing state (D=Df), while a final step catastrophically leads to the complete fracture state (D=1.0). Experimental measurements and numerical simulations for both of the plate impact and the cylindrical tube have verified that these two parameters (Dl and Df) physically constrain the dynamic tensile fracture and may be considered as the intrinsic material constant. Application of this physical criterion for the prediction of dynamic tensile fracture under intricate loading and for complex geometrical system has been discussed.

     

  • loading
  • Yu M H. Advances in strength theories for materials under complex stress state in the 20th century [J]. Advances in Mechanics, 2004, 34(4): 529-560. (in Chinese)
    俞茂宏. 强度理论百年总结 [J]. 力学进展, 2004, 34(4): 529-560.
    Chen D N, Wang D S, Ma S H, et al. Two kinds of dynamic fracture[J]. Explosion and Shock Waves, 1987, 7(1): 27-33. (in Chinese)
    陈大年, 王德生, 马松合, 等. 两类动态断裂 [J]. 爆炸与冲击, 1987, 7(1): 27-33.
    Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Phil Trans Roy Soc, 1914, 213A(10): 437-456.
    Rinehart J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. J Appl Phys, 1951, 22(5): 555-562.
    Whiteman P. Atomic weapons research establishment report, AWRESWAN-10/61 [R]. Aldermaston, UK: Part of Ministry of Defence, 1962.
    Bread B R, Mader C L, Venable D. Technique for the determination of dynamic-tensile-strength characteristics [J]. J Appl Phys, 1967, 38(8): 3271-3275.
    Davison L, Stevens A L. Continuum measures of spall damage [J]. J Appl Phys, 1972, 43(3): 988-994.
    Meyers M A, Aimone C T. Dynamic fracture (spalling) of metals [J]. Prog Mater Sci, 1983, 28: 1-96.
    Curran D R, Seaman L, Shockey D A. Dynamic failure of solid [J]. Phys Rep, 1987, 147(5/6): 253-388.
    Kanel G I. Dynamic strength of materials [J]. Fatigue Fract Eng Mater Struct, 1999, 22(11): 1011-1023.
    Tonks D L, Zurek A K, Thissell W R. Void coalescence model for ductile damage [C]//Shock Compression of Condensed Matter-2001. New York: American Institute of Physics, 2002: 611-614.
    Antoun T H, Seaman L, Curran D R, et al. Spall Fracture [M]. New York: Springer, 2003: 1-20.
    Bai Y L, Ke F J, Xia M F. Formulation of statistical evolution of microcracks in solids [J]. Chinese Journal of Therortical and Applied Mechanics, 1991, 23(3): 290-298. (in Chinese)
    白以龙, 柯孚久, 夏蒙棼. 固体中微裂纹系统统计演化的基本描述 [J]. 力学学报, 1991, 23(3): 290-298.
    Chen D N, Yu Y Y, Yin Z H, et al. A new conceptual model to describe spallation [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 105-112. (in Chinese)
    陈大年, 俞宇颖, 尹志华, 等. 一种新的概念性层裂模型 [J]. 高压物理学报, 2005, 19(2): 105-112.
    Li Y C, Cao J D, Dong J, et al. Research of damage evolution equation and spallation criterion of 45# steel [J]. Chinese Quarterly of Mechanics, 2006, 27(2): 329-334. (in Chinese)
    李永池, 曹结东, 董杰, 等. 45#钢的损伤演化方程和层裂准则研究 [J]. 力学季刊, 2006, 27(2): 329-334.
    Huang Z P, Yang L M, Pan K L. Dynamic damage and failure of materials [J]. Advances in Mechanics, 1993, 23(4): 433-467. (in Chinese)
    黄筑平, 杨黎明, 潘客麟. 材料的动态损伤和失效 [J]. 力学进展, 1993, 23(4): 433-467.
    Feng J B. Damage function models for the dynamic ductile fracture of metals [D]. Beijing: Beijing Science and Technology University, 1992. (in Chinese)
    封加波. 金属动态延性破坏的损伤度函数模型 [D]. 北京: 北京理工大学, 1992.
    Wang Y G. Dynamic tensile spall of ductile metal and its critical damage evolution model [D]. Mianyang: CAEP, 2006. (in Chinese)
    王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006.
    Luo J, Zhu W J, Lin L B, et al. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting [J]. Acta Physica Sinica, 2005, 54(6): 2791-2798. (in Chinese)
    罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54(6): 2791-2798.
    Zhu W J, Song Z F, Deng X, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Phys Rev B, 2007, 75: 024104.
    Deng X L, Zhu W J, Song Z F, et al. Microscopic mechanism of void coalescence under shock loading [J]. Acta Physica Sinica, 2009, 58(7): 4772-4778. (in Chinese)
    邓小良, 祝文军, 宋振飞, 等. 冲击加载下孔洞贯通的微观机理研究 [J]. 物理学报, 2009, 58(7): 4772-4778.
    Cui X L, Li Y J, Zhu W J, et al. Micro-analysis of the void growth of aluminum under shock loading [J]. Chinese Journal of High Pressure Physic, 2009, 23(1): 37-41. (in Chinese)
    崔新林, 李英骏, 祝文军, 等. 冲击加载下铝中孔洞长大的微观机理分析 [J]. 高压物理学报, 2009, 23(1): 37-41.
    Qi M L, He H L, Wang Y G, et al. Simulation of micro void evolution in the pure aluminum under dynamic loading [J]. Journal of Vibration and Shock, 2007, 26(8): 133-135. (in Chinese)
    祁美兰, 贺红亮, 王永刚, 等. 动态冲击下纯铝中微损伤演化的仿真研究 [J]. 振动与冲击, 2007, 26(8): 133-135.
    Wang Y G, He H L, Wang L L, et al. Percolation description for the early stage of void coalescence during dynamic tensile fracture in ductile materials [J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 127-132. (in Chinese)
    王永刚, 贺红亮, 王礼立, 等. 延性材料动态拉伸断裂早期连通过程的逾渗描述 [J]. 高压物理学报, 2006, 20(2): 127-132.
    Qi M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese)
    祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007.
    Qi M L, Luo C, He H L, et al. Damage property of incompletely spalled aluminum under shock wave loading [J]. J Appl Phys, 2012, 111(4): 043506.
    Feng J B, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model [J]. J Appl Phys, 1997, 81(6): 2575-2578.
    Li X M, Jin X G, Li D H. The spall characteristics of cylindrical steel tube under inward explosion loading [J]. Explosion and Shock Waves, 2005, 25(2): 107-111. (in Chinese)
    李雪梅, 金孝刚, 李大红. 钢圆管在内爆加载下的层裂特性研究 [J]. 爆炸与冲击, 2005, 25(2): 107-111.
    Wang Y G, He H L, Wang L L. Critical damage evolution model for spall failure of ductile metals [J]. Mech Mater, 2013, 56: 131-141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7073) PDF downloads(442) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return