Volume 27 Issue 1
Mar 2015
Turn off MathJax
Article Contents
ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013
Citation: ZOU Li-Yong, LIU Cang-Li, PANG Yong, LUO Xi-Sheng, BAI Jin-Song, YANG Ji-Ming. A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90-98. doi: 10.11858/gywlxb.2013.01.013

A Numerical Study on Interface Evolution and Jet Development of a Shocked SF6 Gas Bubble

doi: 10.11858/gywlxb.2013.01.013
  • Received Date: 15 Aug 2011
  • Rev Recd Date: 14 Nov 2011
  • Issue Publish Date: 15 Feb 2013
  • The Richtmyer-Meshkov instability occurring on a heavy gas (SF6) bubble surrounded by N2 is numerically investigated in the present work. The interface evolution, shock focusing and jet development are emphasized. Numerical schlieren images and distributions of pressure, density and vorticity are exhibited for an incident shock wave of Mach number 1.23. The jet velocity, circulation and baroclinic torque versus time as well as peak values of pressure and density in the flow field are quantitatively analyzed. The results indicate that SF6 gas bubble accelerated by a planar shock wave has a strong cumulative energy effect so that it produces nearly ideal shock focusing and point source explosion phenomenon near the downstream pole within the bubble interface, which directly results in a secondary wave pattern and a slender jet moving in the streamwise direction. Compared with the secondary wave pattern, the incident shock wave brings on more intense baroclinic torque and vorticity.

     

  • loading
  • Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pur Appl Math, 1960, 13(2): 297-319.
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dyn, 1969, 4(5): 101-104.
    Winkler K H A, Chalmers J W, Hodson S W, et al. A numerical laboratory [J]. Phys Today, 1987, 40(10): 28-37.
    Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. J Fluid Mech, 1987, 181: 41-76.
    Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas [J]. J Fluid Mech, 1988, 189: 23-51.
    Quirk J J, Karni S. On the dynamics of a shock-bubble interaction [J]. J Fluid Mech, 1996, 318: 129-163.
    Cowperthwaite N. The interaction of a plane shock and a dense spherical inhomogeneity [J]. Phys D, 1989, 37(1/2/3): 264-269.
    Zabusky N J, Zeng S M. Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-spherical fast/slow bubble interactions [J]. J Fluid Mech, 1998, 362: 327-346.
    Giordano J, Burtschell Y. Richtmyer-Meshkov instability induced by shock-bubble interaction: Numerical and analytical studies with experimental validation [J]. Phys Fluids, 2006, 18(3): 036102.
    Niederhaus J H J, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. J Fluid Mech, 2008, 594: 85-124.
    Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions [J]. Annu Rev Fluid Mech, 2011, 43: 117-140.
    Li Q B, Fu S, Xu K. A compressible Navier-Stokes flow solver with scalar transport [J]. J Comput Phys, 2005, 204(2): 692-714.
    Tian B L, Fu D X, Ma Y W. Effects of adiabatic exponent on Richtmyer Meshkov instability [J]. Chin Phys Lett, 2004, 21(9): 1770-1772.
    Bai J S, Zou L Y, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Phys Rev E, 2010, 82: 056318.
    Yan C L, Sun D J, Yin X Y, et al. Numerical simulations of Richtmyer-Meshkov instability [J]. Chinese Journal of Computation Physics, 2001, 18(1): 27-32. (in Chinese)
    严长林, 孙德军, 尹协远, 等. Richtmyer-Meshkov不稳定性的数值模拟 [J]. 计算物理, 2001, 18(1): 27-32.
    Sun M, Takayama K. Conservative smoothing on an adaptive quadrilateral grid [J]. J Comput Phys, 1999, 150(1): 143-180.
    Sun M. Numerical and experimental studies of shock wave interaction with bodies [D]. Sendai, Japan: Tohoku University, 1998.
    Sun M, Yada K, Jagadeesh G, et al. A study of shock wave interaction with a rotating cylinder [J]. Shock Waves, 2003, 12(6): 479-485.
    Sun M, Takayama K. A holographic interferometric study of shock wave focusing in a circular reflector [J]. Shock Waves, 1996, 6(6): 323-336.
    Luo X. Unsteady flows with phase transition [D]. Eindhoven, Netherlands: Eindhoven University of Technology, 2004.
    Luo X, Prast B, van Dongen M E H, et al. On phase transition in compressible flows: Modelling and validation [J]. J Fluid Mech, 2006, 548: 403-430.
    Fan M R, Zhai Z G, Si T, et al. Numerical simulations of interface with different shape accelerated by a planar shock [J]. Scientia Sinica G, 2011, 41(7): 862-869. (in Chinese)
    范美如, 翟志刚, 司廷, 等. 激波与不同形状界面作用的数值模拟 [J]. 中国科学G辑, 2011, 41(7): 862-869.
    Zhai Z, Si T, Luo X, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave [J]. Phys Fluids, 2011, 23: 084104.
    Zhai Z G, Si T, Luo X S, et al. On the evolution of SF6 spherical gas interface accelerated by planar shock wave [C]//Procedings of the 14th Chinese National Symposium on Shock Waves, Huangshan, 2010: 371-376. (in Chinese)
    翟志刚, 司廷, 罗喜胜, 等. 平面激波作用下SF6球形界面变形与发展的研究 [C]//第14届全国激波与激波管学术会议论文集, 黄山, 2010: 371-376.
    Sedov L I. Similarity and Dimensional Methods in Mechanics [M]. New York: Academic Press, 1959.
    Schilling O, Latini M, Don W S. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability [J]. Phys Rev E, 2007, 76(2): 026319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7530) PDF downloads(368) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return