Volume 26 Issue 4
Apr 2015
Turn off MathJax
Article Contents
NIU Fang, LIU Qing-Ming, BAI Chun-Hua, HE Xue-Qiu, GONG Guang-Dong. Flame Propagation and Combustion in Methane-Coal-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015
Citation: NIU Fang, LIU Qing-Ming, BAI Chun-Hua, HE Xue-Qiu, GONG Guang-Dong. Flame Propagation and Combustion in Methane-Coal-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015

Flame Propagation and Combustion in Methane-Coal-Air Mixture

doi: 10.11858/gywlxb.2012.04.015
  • Received Date: 24 Oct 2010
  • Rev Recd Date: 31 Jan 2011
  • Issue Publish Date: 15 Aug 2012
  • Combustion and explosion experiments are carried out in an explosion tank of 10 m3 for the mixture of 8% methane 75 g/m3 coal dust-air. Optical method and pressure method are adopted to obtain the laminar burning velocity, flame speed, flame thickness, Markstein length as well as the explosibility index of the mixture when the flame spread. The results show that the burning velocity of the mixture of methane-coal dust-air is 0.437 m/s, while the value is 0.459 m/s according to the relationship between pressure and time, and the results from the two methods are coincide. The flames trends determined by flame thickness and Markstein length are the same, and both tend towards stability. The maximum of explosibility index occurs at 0.5 m, and the explosibility index at the wall of explosion chamber is a bit small.

     

  • loading
  • Sun J H, Dobashib R, Hirano T. Structure of flames propagating through aluminum particles cloud and combustion process of particles [J]. J Loss Prev Process Ind, 2006, 19(6): 769-773.
    Eckhoff R K. Current status and expected future trends in dust explosion research [J]. J Loss Prev Process Ind, 2005, 18: 225-237.
    Kolbe M. Laminar burning velocity measurements of stabilized aluminum dust flames [D]. Montreal, Quebec, Canada: Concordia University, 2001.
    Yu G, Law C K, Wu C K. Laminar flame speeds of hydrocarbon-air mixtures with hydrogen addition [J]. Combust Flame, 1986, 63(3): 339-347.
    Bosschaart K J, de Goey L P H, Burgers J M. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method [J]. Combust Flame, 2004, 136(3): 261-269.
    Bosschaart K J, de Goey L P H. Detailed analysis of the heat-flux method for measuring burning velocities [J]. Combust Flame, 2003, 132: 170-180.
    Miao H Y, Ji M, Jiao Q, et al. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures [J]. Int J Hydrogen Energy, 2009, 34(7): 3145-3155.
    Burke M P, Chen Z, Ju Y G, et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames [J]. Combust Flame, 2009, 156(4): 771-779.
    Bradley D, Chen Z, Swithenbank J K. Burning rates in turbulent fine dust-air explosions [A]//Proceedings of the 22nd International Symposium on Combustion [C]. Pittsburgh, US, 1989: 1767-1775.
    Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels [J]. Combust Flame, 1976, 26: 201-217.
    Kwon O C, Rozenchan G, Law C K. Cellular instabilities and self-acceleration of outwardly propagating spherical flames [J]. Proc Combust Inst, 2002, 29(2): 1775-1783.
    Eckhoff R K. Dust Explosions in the Process Industries [M]. 3rd ed. Oxford, UK: Gulf Professional Publishing, 2003: 268.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7574) PDF downloads(610) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return