| Citation: | GAO Xiang, CHEN Peng-Wan, LIU Jian-Jun, XIONG Guang-Yuan. Experimental Study on Phase Transformation of TiO2 Induced by High Energy Milling[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 421-425. doi: 10.11858/gywlxb.2012.04.010 |
|
Mammone J F, Nicol M, Sharma S K. Raman spectra of TiO2-Ⅱ, TiO2-Ⅲ, SnO2, and GeO2 at high pressure [J]. J Phys Chem Solids, 1981, 42(5): 379-384.
|
|
Ohsaka T, Yamaoka S, Shimomura O. Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2) [J]. Solid State Commun, 1979, 30(6): 345-347.
|
|
Malcolm N, Fong M Y. Raman spectrum and polymorphism of titanium dioxide at high pressures [J]. J Chem Phys, 1971, 54(7): 3167-3170.
|
|
Haines J, Leger J M. X-ray diffraction study of TiO2 up to 49 GPa [J]. Physica B, 1993, 192: 233-237.
|
|
Sato H, Endo S, Sugiyama M, et al. Baddeleyite-type high-pressure phase of TiO2 [J]. Science, 1991, 251: 786-788.
|
|
Dubrovinsky L S, Dubrovinskaia N A, Swamy V, et al. The hardest known oxide [J]. Nature, 2001, 410: 653-654.
|
|
Fujishima A, Rao T N, Tryk A D. Titanium dioxide photocatalysis [J]. J Photochem Photobiol C, 2000, 1(1): 1-21.
|
|
Gerward L, Olsen J S. Post-rutile high-pressure phases in TiO2 [J]. J Appl Cryst, 1997, 30: 259-264.
|
|
Lagarec K, Desgreniers S. Raman study of single crystalanatase TiO2 up to 70 GPa [J]. Solid State Commun, 1995, 94(7): 519-524.
|
|
Minshall F S. Investigation of polymorphic transition in iron at 130 kbar [J]. Phys Rev, 1955, 98: 271.
|
|
DeCarli P S, Jamieson J C. Formation of diamond by explosive shock [J]. Science, 1961, 133: 1821-1822.
|
|
Tan H, Han J W, Wang X J, et al. Explosive shock synthesis of wurtzite type boron nitride [J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 241-253. (in Chinese)
|
|
谭华, 韩钧万, 王晓江, 等. 炸药爆炸冲击波合成纤锌矿型氮化硼 [J]. 高压物理学报, 1991, 5(4): 241-253.
|
|
Benjamin J S. Dispersion strengthened superalloys by mechanical alloying [J]. Metall Mater Trans B, 1970, 1(10): 2943-2951.
|
|
Benjamin J S. Mechanical alloying [J]. Sci Am, 1976, 234: 40-48.
|
|
Shingu P H, Huang B, Nishitani S R, et al. Nano-meter order cystalline structures Al2Fe alloys produced by mechanical alloyings [J]. Suppl Trans Japan Inst Metals, 1988, 29(3): 3-10.
|
|
Ren R M, Yang Z G, Shaw L L. Polymorphic transformation and powder characteristics of TiO2 during high energy milling [J]. J Mater Sci, 2000, 35(23): 6015-6026.
|
|
Wu Q S, Gao S J, Zhang S M, et al. Polymorphic transformation of anatase TiO2 caused by high-energy ball milling [J]. Materials Science and Technology, 2002, 10(4): 382-386. (in Chinese)
|
|
吴其胜, 高树军, 张少明, 等. 高能球磨锐钛矿型TiO2晶型转变的研究 [J]. 材料科学与工艺, 2002, 10(4): 382-386.
|
|
Liu J J, Qin W, Zuo S L, et al. Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-dope dtitania [J]. J Hazard Mater, 2009, 163(1): 273-278.
|
|
Linde R K, DeCarli P S. Polymorphic behavior of titania under dynamic loading [J]. J Chem Phys, 1969, 50(1): 319-325.
|
|
Maurice D R, Courtney T H. The physics of mechanical alloying: A first report [J]. Metall Mater Trans A, 1990, 21(1): 289-303.
|
|
Murray J L, Wriedt H A. The O-Ti (oxygen-titanium) system[J]. J Phase Equilibria, 1987, 8(2): 148-165.
|