| Citation: | MA Qiu-Ju, ZHANG Qi, PANG Lei. Theoretical Model of Minimum Ignition Energy Prediction for Methane-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 301-305. doi: 10.11858/gywlxb.2012.03.009 |
|
Eckhoff R K. On the minimum ignition energy (MIE) for propane/air [J]. J Hazard Mater, 2010, 175(1-3): 293-297.
|
|
Sacks H K, Novak T. A method for estimating the probability of lightning causing a methane ignition in an underground mine [J]. IEEE T Ind Appl, 2008, 44(2): 418-423.
|
|
Man C K, Gibbins J R. Factors affecting coal particle ignition under oxy fuel combustion atmospheres [J]. Fuel, 2011, 90(1): 294-304.
|
|
Han J L, Yamashita H, Hayashi N. Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay [J]. Combust Flame, 2010, 157(7): 1414-1421.
|
|
Kelley A P, Jomaas G, Law C K. Critical radius for sustained propagation of spark-ignited spherical flame [J]. Combust Flame, 2009, 156(5): 1006-1013.
|
|
Amyoeee P R, Chippett S, Pegg M J. Effects of turbulence on dust explosion [J]. Prog Energ Combust, 1988, 14(4): 293-310.
|
|
El-Sayeda S A. Effect of degree of reaction on critical conditions and times to ignition of a gas mixture explosion [J]. Combust Sci Tech, 2006, 178(6): 1055-1086.
|
|
Petersen E L, Davidson D F, Hanson R K. Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures [J]. Combust Flame, 1999, 290(117): 272-290.
|
|
Fluent Inc. Fluent 6. 3 User's Guide [Z]. Lebanon, NH, 2006.
|
|
LI Wei. Study on the process and characters of gas and dust's explosion [D]. Beijing: Beijing Institute of Technology, 2010: 43. (in Chinese)
|
|
李伟. 气体粉尘爆炸过程及其参数研究 [D]. 北京: 北京理工大学, 2010: 43.
|