Volume 26 Issue 1
Apr 2015
Turn off MathJax
Article Contents
LIU Wei, LI Huo-Kun, LIU Cheng-Mei, LIU Wei-Lin. Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
Citation: LIU Wei, LI Huo-Kun, LIU Cheng-Mei, LIU Wei-Lin. Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017

Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT

doi: 10.11858/gywlxb.2012.01.017
  • Received Date: 29 Jun 2010
  • Rev Recd Date: 24 Nov 2010
  • Issue Publish Date: 15 Feb 2012
  • In order to analyze the flow field within the microchannel of dynamic high-pressure microfluidization, the geometric model and mesh model are established, and the pressure and velocity distributions of the flow field in interactive chamber are obtained with SIMPLEC solution algorithm and RNG k- model using FLUENT software. The simulated results show that the high-speed jet flow impinging increases the acting force field, and the sharp increment of the flow velocity rapidly increases the velocity gradient and shear stress. All these ensure the excellent effect of the high-pressure microfuidization. In addition, because of the opposite change of the static pressure and velocity in the oscillating chamber, the dramatic changes of static pressure greatly enhance the effect of gas cavity and pressure release, which corrode the material of the interactive chamber. It is desirable to appropriately decrease feeding speed, reduce the fluid separation inlet corner angle, and choose a short discharge nozzle on the condition of ensuring the impinging speed when designing the internal microchannel of interactive chamber.

     

  • loading
  • Liu W, Liu J H, Xie M Y, et al. Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai) [J]. J Agric Food Chem, 2009, 57(12): 5376-5380.
    Paquin P. Technological properties of high pressure homogenizers: The effect of fat globules, milk proteins, and polysaccharides [J]. Int Dairy J, 1999, 9(3-6): 329-335.
    Laneuville S I, Paquin P, Turgeon S L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes [J]. Food Hydrocolloid, 2000, 14(4): 305-314.
    Yuan Y, Gao Y, Zhao J, et al. Characterization and stability evaluation of beta-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions [J]. Food Res Int, 2008, 41(1): 61-68.
    Liu W, Liu J H, Liu C M, et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment [J]. Innovat Food Sci Emerg Tech, 2009, 10(2): 142-147.
    Liu W, Zhang Z Q, Liu C M, et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin [J]. Food Chem, 2010, 123(3): 616-621.
    Clemencia C L, Rosalba L, Annalisa S, et al. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability [J]. Food Control, 2009, 20(8): 691-695.
    Liu W, Liu W L, Liu C M, et al. Preparation of medium-chain fatty acids (MCFA) nano-liposome by means of high pressure microfluidization (HPM) [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 293-299. (in Chinese)
    刘伟, 刘玮琳, 刘成梅, 等. 高压微射流制备纳米中链脂肪酸脂质体的研究 [J]. 高压物理学报, 2010, 24(4): 293-299.
    Mohr K H. High-pressure homogenization. Part Ⅰ. Liquid-liquid dispersion in turbulence fields of high energy density [J]. J Food Eng, 1987, 6(3): 177-186.
    Soon S Y, Harbridge J, Titchener-Hooker N J, et al. Prediction of drop breakage in an ultra high velocity jet homogenizer [J]. J Chem Eng Jpn, 2001, 34(5): 640-646.
    Hkansson A, Trgrdh C, Bergensthl B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model [J]. Food Hydrocolloids, 2009, 23(4): 1177-1183.
    Feijoo S C, Hayes W W, Watson C E, et al. Effects of microfluidizer technology on Bacillus licheniformis spores in ice cream mix [J]. J Dairy Sci, 1997, 80(9): 2184-2187.
    Liu W, Liu C M, Ruan R S, et al. Analysis of heat conversion of pressure and energy in the high hydrostatic pressure processing [J]. Food Science, 2003, 24(7): 162-164. (in Chinese)
    刘伟, 刘成梅, 阮榕生, 等. 高压处理过程中的压力和能量分析 [J]. 食品科学, 2003, 24(7): 162-164.
    Liu C M, Liu W, Gao Y Y, et al. Analysis on fluid dynamic behavior in high velocity jet homogenizer [J]. Food Science, 2004, 25(4): 58-62. (in Chinese)
    刘成梅, 刘伟, 高荫榆, 等. 微射流均质机的流体动力学行为分析 [J]. 食品科学, 2004, 25(4): 58-62.
    Zhou Z G, Ma D Y. Numerical simulation of high-pressure jet nozzle based on fluent [J]. Machine Building and Automation, 2010, 39(1): 61-62. (in Chinese)
    周章根, 马德毅. 基于Fluent的高压喷嘴射流的数值模拟 [J]. 机械制造与自动化, 2010, 39(1): 61-62.
    Zhao Y. Refined lanczos type methods for computing a partial singular value decomposition of a large matrix [D]. Dalian: Dalian University of Technology, 2004. (in Chinese)
    赵妍. 应用FLUENT对管路细部流场的数值模拟 [D]. 大连: 大连理工大学, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8347) PDF downloads(548) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return