Volume 25 Issue 5
Apr 2015
Turn off MathJax
Article Contents
LI Jun, LI Jia-Bo, ZHOU Xian-Ming, WANG Qing-Song, DAI Cheng-Da. A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007
Citation: LI Jun, LI Jia-Bo, ZHOU Xian-Ming, WANG Qing-Song, DAI Cheng-Da. A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 421-428 . doi: 10.11858/gywlxb.2011.05.007

A Combined Technique for Measuring Hugoniot and Interfacial Temperature of Preheating Metals

doi: 10.11858/gywlxb.2011.05.007
More Information
  • Corresponding author: ZHOU Xian-Ming
  • Received Date: 21 Aug 2010
  • Rev Recd Date: 31 Dec 2010
  • Issue Publish Date: 15 Oct 2011
  • Research of dynamic respond properties for metal at initial high-temperature condition is very important to develop the universal equation of state. Thus, resistance-wire preheating apparatus over initial temperature range of 300-800 K has been built up by our group in light-gas-gun experiments, and a non-contact pyrometer diagnostic technique was developed to perform simultaneous measurements of the shock-Hugoniot and the interfacial temperature on a preheated metal. Examples for measuring dynamic respond properties of tantalum are presented. The measured data for shock velocity versus particle velocity at initial temperature of 300 K is in agreement with previous shock compression data, while the data of 773 K lies below the theoretical Hugoniot that was calculated based on the principal Hugoniot. The obtained interfacial temperatures are in agreement with the melting points that shocked from the ambient conditions and ab initio results. It indicates that our target-preheating apparatus and non-contact pyrometer diagnostic technique is a viable approach to study the temperature effects on shock response of metals.

     

  • loading
  • Jing F Q. Introduction to Experimental Equation of State [M]. 2nd ed. Beijing: Science Press, 1999: 5. (in Chinese)
    经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 5.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1980, 52: 3363-3374.
    Marsh S P. LASL Shock Hugoniot Data [Z]. Los Angeles: University of California Press, 1980.
    Colvin J D, Reed B W, Jankowski A F, et al. Microstructure Morphology of Shock-Induced Melt and Rapid Resolidification in Bismuth [J]. J Appl Phys, 2007, 101: 084906(1)-084906(10).
    Li J, Zhou X M, Wang X, et al. A Combined Measurement with Pyrometer and VIASR [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 203-207. (in Chinese)
    李俊, 周显明, 王翔, 等. 多通道辐射高温计与VISAR的联合诊断技术 [J]. 高压物理学报, 2008, 22(2): 203-207.
    Asay J R. Shock-Induced Melting in Bismuth [J]. J Appl Phys, 1974, 45: 4441-4452.
    Kanel G I, Razorenov S V, Bogatch A, et al. Spall Fracture Properties of Aluminum and Magnesium at High Temperatures [J]. J Appl Phys, 1996, 79: 8310-8317.
    Davis J P, Hayes D B. Isentropic Compression Experiments on Dynamic Solidification in Tin [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: Elsevier Science Publishers, 2004: 163-166.
    Rigden S M, Ahrens T J, Stolper E M. Shock Compression of Molten Silicate: Results for a Model Basaltic Compression [J]. J Geophys Res, 1988, 93: 367-382.
    Miller G H, Ahrens T J, Stolper E M. The Equation of State of Molybdenum at 1400 ℃ [J]. J Appl Phys, 1988, 63: 4469-4475.
    Duffy T S, Ahrens T J. Free Surface Velocity Profiles in Molybdenum Shock Compressed at 1400 ℃ [A]//Schmidt S C, Shaner J W, Semara G A, et al. High-Pressure Science and Technology [C]. New York: Plenum Press, 1993: 1079-1082.
    Duffy T S, Ahrens T J. Dynamic Response of Molybdenum Shock Compressed at 1400 ℃ [J]. J Appl Phys, 1994, 76: 835-842.
    Gu Z W, Jin X G, Zhang Q F, et al. A Set of Experimental Device of Preheating Materials under Shock Compression and Shock Response of Stainless Steel with High Temperature [J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-197. (in Chinese)
    谷卓伟, 金孝刚, 张清福, 等. 材料预加热冲击压缩实验技术及高温下不锈钢的动态响应 [J]. 高压物理学报, 1998, 12(3): 190-197.
    Li J, Zhou X M, Li J B, et al. A Shock-Induced Phase Transformation in a LiTaO3 Crystal [J]. J Appl Phys, 2007, 102: 083503.
    Dai C D, Tan H, Hu J B, et al. Hugoniot Evaluation of the Preheated Metal from Its Principal Hugoniot [J]. J Appl Phys, 2006, 99: 056102.
    Tan H. Introduction to Experimental Shock-Wave Physics [M]. Beijing: National Defense Industry Press, 2007: 137. (in Chinese)
    谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 137.
    Tan H, Dai C D, Zhang L Y, et al. Method to Determine the Melting Temperatures of Metals under Megabar Shock Pressures [J]. Appl Phys Lett, 2005, 87: 221905.
    Partouche-Sebban D, Pelissier J L, Abeyta F G, et al. Measurement of the Shock-Heated Melt Curve of Lead Using Pyrometry and Reflectometry [J]. J Appl Phys, 2005, 97: 043521.
    Dai C D, Hu J B, Tan H. Hugoniot Temperature and Melting of Tantalum under Shock Compression Determined by Optical Pyrometry [J]. J Appl Phys, 2009, 106: 043519.
    Strachan A, Cagin T, Gulseren O, et al. First Principles Force Field for Metallic Tantalum [J]. Model Simul Mater Sci Eng, 2004, 12: 445-456.
    Errandonea D, Somayazulu B, Ditz R, et al. Systematics of Transition-Metal Melting [J]. Phys Rev B, 2003, 63: 132104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8251) PDF downloads(629) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return