Volume 21 Issue 2
Apr 2015
Turn off MathJax
Article Contents
ZHANG Yue-Ju, LI Xiao-Jie, YAN Hong-Hao, QU Yan-Dong, TAO Yu-Xiong. Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004
Citation: ZHANG Yue-Ju, LI Xiao-Jie, YAN Hong-Hao, QU Yan-Dong, TAO Yu-Xiong. Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004

Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process

doi: 10.11858/gywlxb.2007.02.004
More Information
  • Corresponding author: ZHANG Yue-Ju
  • Received Date: 16 Jul 2006
  • Rev Recd Date: 13 Oct 2006
  • Issue Publish Date: 05 Jun 2007
  • In explosive consolidation of nano-powders, the duration in which the loading changed markedly on nano-particles by shock wave is far longer than the time of stress wave propagating through the character length of the particles; and the ceramic powders behave brittleness during explosive shock consolidation. The elastic hypothesis is put forward based on the two facts mentioned above, and the hypothesis is used to deduce the stress status in particles during the process of consolidation. The three criteria of brittleness fracture of damage (Hugonoit elastic limit, dynamic yield strength and theoretical shear strength) are reviewed. The probability of fracture of ceramic particles is estimated by the intersection value of the three criteria. Based on the calculation, it is concluded that there are two maximal shear positions: one is located in the depth of 0.5 nm in particle from the contact surface, where the shear stress is maximum;the other is located further from the surface. This result offers a reference for interpreting the plasticity and fracture during the process of explosive consolidation.

     

  • loading
  • Djurado E, Boulc'h F, Pivkina A, et al. Cold Isostatic and Explosiveisodynamic Compaction of Y-TZP Nanoparticles [J]. Solid State Ionics, 2002, (154-155): 375-380.
    Mamalis A G. Manufacturing of Bulk High-Tc Superconductors [J]. International Journal of Inorganic Material, 2000, 2: 623-633.
    Counihan P J, Crawford A, Thadhani N N. Influence of Dynamic Densification on Nanostructure Formation in Ti5Si3 Intermetallic Alloy and Its Bulk Properties [J]. Material Science and Engneering, 1999, A267: 26-35.
    Shang S S, Hokamoto K, Meyers M. A. Hot Dynamic Consolidation of Hard Ceramics [J]. J Mater Sci, 1992, 27, 5470-5476
    Hokamoto K, Tanaka S, Fujita M, et al. High Temperature Shock Consolidation of Hard Ceramic Powders [J]. Physica, 1997, B239: 1-5.
    Prummer R, Weinor P. Explosive Consolidation of Nanopowders [J]. Interceram, 2002, 51(6): 394-398.
    Zhang D, Wu M S, Feng R. Micromechanical Investigation of Heterogeneous Microplasticity in Ceramics Deformed under High Confining Stresses [J]. Mechanics of Materials, 2005, 37: 95-112.
    Grady D E. Local Inertia Effects Indynamic Fragmentation [J]. J Appl Phys, 1982, 68: 322-325.
    Kipp M E, Grady D E. Dynamic Fracture Growth and Interaction in One Dimension [J]. Physics Mechanics Solids, 1985, 33: 399-415.
    Schwarz R B, Kasiraj P, Vreeland T, et al. A Theory for the Shock-Wave Consolidation of Powders [J]. Acta Metal, 1984, 32(8): 1243-1252.
    Nemat-Nasser S, Deng H. Strain-Rate Effect on Brittle Failure in Compression [J]. Acta Metall Mater, 1994, 42(3): 1013-1024.
    Ravichandran G, Subhash G. A Micromechanical Model for High Strain Rate Behavior of Ceramics [J]. International Journal of Solids Structures, 1995, 32(17/18): 2627-2646.
    Mamais A G, Vottea I N, Manolakos D E. On the Modeling of the Compaction Mechanism of Shock Compacted Powder [J]. Journal of Materials Processing Technology, 2001, 108: 165-178.
    Meyers M A, Bendon D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Materials, 1999, 47(7): 2089-2108.
    Wang L L. Foundation of Stress Wave [M]. Beijing: National Defence Industry Press, 1985: 1-2. . (in Chinese)
    王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 1-2.
    Grady D E. Shock-Wave Compression of Brittle Solids [J]. Mechanics of Materials, 1998, 29: 181-203.
    Tang W H, Zhang R Q, Hu J B, et al. Approximation Calculation Methods of Shock Temperature [J]. Advances in Mechanics, 1998, 28(4): 479-487. (in Chinese)
    汤文辉, 张若棋, 胡金彪, 等. 冲击温度的近似计算 [J]. 力学进展, 1998, 28(4): 479-487.
    Kim B C, Lee J H, Kim J J, et al. Densification of Nanocrystalline ITO Powders in Fast Firing: Effect of Specimen Mass and Sintering Atmosphere [J]. Materials Reserch Bulletin, 2005, 40: 395-404.
    Xu Z L. Elastic Mechanics(3rd ed) [M]. Beijing: Higher Education Press, 1990: 283-309. (in Chinese)
    徐芝纶. 弹性力学(上)(第3版) [M]. 北京: 高等教育出版社, 1990: 283-309.
    Geen D J. Introduction of Mechanic Property of Ceramic Material [M]. Translated by Gong J H. Beijing: Qinghua University Press, 2003: 21. (in Chinese)
    Geen D J. 陶瓷材料力学性能导论 [M]. 龚江宏译. 北京: 清华大学出版社, 2003: 21.
    Xi T G. Thermo-Physics Character of Inorganic Materia [M]. Shang hai: Shanghai Science Technology Press, 1981: 33-34, 214. (in Chinese)
    奚同庚. 无机材料热物性学 [M]. 上海: 上海科学技术出版社, 1981: 33-34, 214.
    Wang L S. Special Ceramic(2nd ed) [M]. Changsha: Centrol South University Press, 2005: 72-74. (in Chinese)
    王零森. 特种陶瓷(第2版) [M]. 长沙: 中南大学出版社, 2005: 72-74.
    Li D H, Wang W. A Study of the Equation of State of Alumina Ceramics [J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 226-231. (in Chinese)
    李大红, 王悟. 陶瓷物态方程实验研究 [J]. 高压物理学报, 1993, 7(3): 226-231.
    Shih C J, Meyers M A, Nesterenko V F, et al. Damage Evolution in Dynamic Deformation of Silican Carbide [J]. Acta Mater, 2000, 48: 2399-2420.
    Jiang B, Weng G J. A Theory of Compressive Yield Strength of Nano-Grained Ceramics [J]. International Journal of Plasticy, 2004, 20: 2007-2026.
    Karch J, Birringer R, Gleiter H. Ceramics Ductile at Llow Temperature [J]. Nature, 1987, 330: 556-558.
    Kirchheim R, Mutschele T, Kieninger W. Hydrogen in Amorphous and Nanocrystalline Metals [J]. Material Science and Engneering, 1988, 99: 457-462.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7632) PDF downloads(711) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return