Volume 11 Issue 1
May. 2015
Turn off MathJax
Article Contents
DONG Lian-Ke, WANG Xiao-Wei. H-Derivative of the Function and the Fractal Dynamics[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003
Citation: DONG Lian-Ke, WANG Xiao-Wei. H-Derivative of the Function and the Fractal Dynamics[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 13-20 . doi: 10.11858/gywlxb.1997.01.003

H-Derivative of the Function and the Fractal Dynamics

doi: 10.11858/gywlxb.1997.01.003
More Information
  • Corresponding author: DONG Lian-Ke
  • Received Date: 19 Aug 1996
  • Rev Recd Date: 09 Oct 1996
  • Issue Publish Date: 05 Mar 1997
  • In this paper, Hausdorff measure of the function f(x) and H-derivative of the function f(x) under Hausdorff measure are given as follows: HD[f(x)]= supn{nj=1|f(xj)-f(xj-1)|D} and f(1)H(x,0)=limx0[|f(x0+ x)-f(x0+ x)|D]/(2x)D=|f(x0)|D. The system of evolution equation of fractal dynamics is u(1)Ht=k(x)u(2)Hxx-u(1)Hx, dD/dt=f(p1, p2), where the first equation is called the equation of fractal dynamics, and the second equation is called the evolution equation of Hausdorff dimension D.

     

  • loading
  • Alain le m'ehaut'e. Fractal Geometry, Theory and Application. Jack Howlett Tran. Boca Raten-Ann Arbot-London: CRC Press Inc, 1991.
    Betal D K. The Fractional Calculus, Theory and Application of Differentiation and Integration to Arbitrany Order. New York: Academia Press, 1974.
    Feder J. Fractals. New York: Plenum Press, 1988.
    Besicovitch A S. Proceedings of the Combridge Philosophical Society, 1945, 41: 101.
    Falconer K J. The Geometry of Fractal Sets. Combridge, New York: Combridge University Press, 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7461) PDF downloads(707) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return