可控加载功能梯度材料设计程序改进与高通量优化设计

李蕾 陈翰 柏劲松 张睿智 张建 吴楯

李蕾, 陈翰, 柏劲松, 张睿智, 张建, 吴楯. 可控加载功能梯度材料设计程序改进与高通量优化设计[J]. 高压物理学报, 2025, 39(11): 110103. doi: 10.11858/gywlxb.20251188
引用本文: 李蕾, 陈翰, 柏劲松, 张睿智, 张建, 吴楯. 可控加载功能梯度材料设计程序改进与高通量优化设计[J]. 高压物理学报, 2025, 39(11): 110103. doi: 10.11858/gywlxb.20251188
LI Lei, CHEN Han, BAI Jinsong, ZHANG Ruizhi, ZHANG Jian, WU Dun. Improvement of the Design Program for Functionally Graded Materials with Controllable Loading and High-Throughput Optimization Design[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110103. doi: 10.11858/gywlxb.20251188
Citation: LI Lei, CHEN Han, BAI Jinsong, ZHANG Ruizhi, ZHANG Jian, WU Dun. Improvement of the Design Program for Functionally Graded Materials with Controllable Loading and High-Throughput Optimization Design[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110103. doi: 10.11858/gywlxb.20251188

可控加载功能梯度材料设计程序改进与高通量优化设计

doi: 10.11858/gywlxb.20251188
基金项目: 国家重点研发计划(2021YFB3802300)
详细信息
    作者简介:

    李 蕾(1982-),女,硕士,工程师,主要从事计算流体力学研究. E-mail:leoleu_hp@163.com

    通讯作者:

    柏劲松(1968-),男,博士,研究员,主要从事计算流体力学研究. E-mail:bjsong@foxmail.com

  • 中图分类号: O351.2

Improvement of the Design Program for Functionally Graded Materials with Controllable Loading and High-Throughput Optimization Design

  • 摘要: 为了实现梯度材料高通量优化设计,需要梯度材料加载性能的准确性和快速预测能力。人工智能技术结合飞速发展的硬件条件已逐渐成为不同学科领域的革命性研究工具。在材料科学领域,机器学习方法在材料的高通量设计和性能的高通量预测方面均发挥着巨大作用。在可控加载梯度材料优化设计中引入机器学习方法,结合基于物理模型的计算结果,建立了较为准确的快速预测模型,显著提高了优化计算通量。多物质流体弹塑性计算程序MLEP在梯度材料实验设计和数据解读中已经过多轮校验,对实验结果具有较高的预测精度,基于该程序的数值实验样本可以建立高精度的代理模型。为了使MLEP可以应用于更宽范围的密度梯度材料设计及实验预测,在现有模拟程序中加入了p-α 模型,用于描述低密度聚合物在冲击/准等熵加载中的力学行为,可以实现飞片密度从0.5 g/cm3左右增大至15.0 g/cm3

     

  • 图  梯度飞片设计流程图

    Figure  1.  GDI design flowchart

    图  复杂加载实验示意图

    Figure  2.  Schematic diagram of the configuration of the complexity loading experiment

    图  飞片自由表面速度数值计算与实验结果对比

    Figure  3.  Comparison of the flyer free surface velocity between calculation and experimental results

    图  p-α模型中孔隙率随压力的变化

    Figure  4.  Porosity as a function of pressure in p-α model

    图  PMMA泡沫撞击LiF窗口

    Figure  5.  PMMA foam impacting on a LiF window

    图  MLEP与Eula程序计算结果对比

    Figure  6.  Comparison of calculation results between MLEP and Eula program

    图  MLEP计算结果与实验结果对比

    Figure  7.  Comparison of calculation results by MLEP and experimental results

    图  深度神经网络(DNN)示意图

    Figure  8.  Schematic diagram of deep neural network

    图  机器学习得到快速预测模型的研究思路

    Figure  9.  Research approach for developing fast prediction models using machine learning

    图  10  代理模型与MLEP得到的样品界面粒子速度历史曲线对比

    Figure  10.  Comparison of particle velocity-time curves of sample interface obtained by surrogate model and MLEP

    图  11  代理模型与MLEP得到的样品原位应力历史曲线对比

    Figure  11.  Comparison of sample in-situ stress-time curves obtained by surrogate model and MLEP

    图  12  样品原位应变率历史曲线的对比

    Figure  12.  Comparison of sample in-situ strain rate-time curves

    图  13  原位信息及变量云图

    Figure  13.  In-situ information and variable contour plot

    表  1  GDI的设计参数

    Table  1.   GDI design parameters

    No. Thickness/mm Mass fraction/%
    Al Cu C
    1 0.40 100.000 0 0
    2 0.05 93.003 3.997 3.0
    3 0.05 92.195 4.805 3.0
    4 0.05 87.019 9.981 3.0
    5 0.05 80.815 16.185 3.0
    6 0.05 73.920 23.080 3.0
    7 0.05 66.643 30.357 3.0
    8 0.05 59.254 37.746 3.0
    9 0.05 51.970 45.030 3.0
    10 0.05 44.956 52.044 3.0
    11 0.05 38.327 58.673 3.0
    12 0.05 32.155 64.845 3.0
    13 0.05 26.479 70.521 3.0
    14 0.05 21.307 75.693 3.0
    15 0.05 16.632 80.368 3.0
    16 0.05 12.431 84.569 3.0
    17 0.05 8.673 88.327 3.0
    18 0.05 5.324 91.676 3.0
    19 0.05 2.346 94.654 3.0
    20 0.05 0.500 96.500 3.0
    21 0.40 0 100.000 0
    下载: 导出CSV

    表  2  训练数据集中的输入变量

    Table  2.   Input variables in the training dataset

    Operating condition parameters Spatio-temporal field variables
    Flying layer front
    density/(g·cm−3)
    Flying layer rear
    density/(g·cm−3)
    Flying layer density
    distribution index
    Impact velocity/
    (km·s–1)
    Test position/mm Historical time/μs
    2.713, 3.000,
    3.500, 4.000
    6.0, 6.5, 7.0, 7.5,
    8.0, 8.5, 8.9
    0.1, 0.3, 0.5, 0.7,
    0.9, 2.0, 4.0,
    6.0, 8.0, 10.0
    1.0, 2.0, 3.0,
    4.0, 5.0
    0.2−2.0 0−2.0
    下载: 导出CSV

    表  3  测试结果

    Table  3.   Testing results

    Case
    No.
    ρ1/(g·cm−3) ρ2/(g·cm−3) C u0/(km·s–1) Functional
    module
    Test prediction error/%
    Velocity
    peak
    Pressure
    peak
    Average
    strain rate
    T1 2.87 8.12 2.86 0.2525 Complete coverage 0.29 0.42 0.04
    T2 3.13 8.41 1.06 0.4325 Complete coverage 0.27 0.41 1.36
    T3 3.84 7.54 0.84 0.4175 Complete coverage 0.10 0.13 1.59
    T4 3.52 8.27 3.09 0.3275 Complete coverage 0.38 0.60 0.28
    T5 3.58 7.68 0.61 0.3425 Complete coverage 0.37 0.50 1.08
    T6 3.45 7.97 4.66 0.4775 Complete coverage 0.20 0.28 1.17
    T7 3.00 6.07 2.19 0.4925 Complete coverage 0.02 0.03 6.21
    T8 3.90 7.24 1.51 0.4475 Complete coverage 0.11 0.14 1.41
    T9 3.77 6.95 3.54 0.3125 Complete coverage 0.37 0.59 2.38
    T10 3.32 7.10 4.44 0.2075 Complete coverage 0.04 0.01 4.53
    T11 3.71 8.70 1.96 0.3725 Complete coverage 0.38 0.63 3.48
    T12 3.20 6.66 3.31 0.3575 Complete coverage 0.19 0.39 3.18
    T13 3.26 7.39 2.64 0.2975 Complete coverage 0.34 0.55 2.22
    T14 3.65 6.80 3.76 0.4625 Complete coverage 0.17 0.17 1.65
    T15 2.94 7.83 2.41 0.4025 Complete coverage 0.39 0.67 3.07
    T16 3.97 8.85 1.74 0.3875 Complete coverage 0.28 0.47 4.25
    T17 2.74 6.37 4.21 0.2825 Complete coverage 0.20 0.27 6.52
    T18 3.07 8.56 1.29 0.2225 Complete coverage 0.04 0.20 0.83
    T19 2.81 6.22 3.99 0.2675 Complete coverage 0.06 0.05 5.79
    T20 3.39 6.51 4.89 0.2375 Complete coverage 0.09 0.09 1.14
    下载: 导出CSV
  • [1] HOOVER W G. Structure of a shock-wave front in a liquid [J]. Physical Review Letters, 1979, 42(23): 1531–1534. doi: 10.1103/PhysRevLett.42.1531
    [2] NGUYEN J H, ORLIKOWSKI D, STREITZ F H, et al. High-pressure tailored compression: controlled thermodynamic paths [J]. Journal of Applied Physics, 2006, 100(2): 023508. doi: 10.1063/1.2214209
    [3] NGUYEN J H, ORLIKOWSKI D, STREITZ F H, et al. Specifically prescribed dynamic thermodynamic paths and resolidification experiments [J]. AIP Conference Proceedings, 2004, 706(1): 1225–1230. doi: 10.1063/1.1780459
    [4] 柏劲松, 罗国强, 黄娇凤, 等. Pillow飞片气炮加载实验的数值模拟研究 [J]. 高压物理学报, 2011, 25(5): 390–394. doi: 10.11858/gywlxb.2011.05.002

    BAI J S, LUO G Q, HUANG J F, et al. Numerical simulation of the gas gun experiment with pillow impactor loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 390–394. doi: 10.11858/gywlxb.2011.05.002
    [5] 柏劲松, 罗国强, 王翔, 等. Mg-W体系密度梯度飞片复杂加载实验的计算分析 [J]. 力学学报, 2010, 42(6): 1068–1073. doi: 10.6052/0459-1879-2010-6-lxxb2009-351

    BAI J S, LUO G Q, WANG X, et al. Calculation and analysis of the Mg-W GDI complex loading experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1068–1073. doi: 10.6052/0459-1879-2010-6-lxxb2009-351
    [6] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40: 2490–2499. doi: 10.1063/1.1658021
    [7] WUENNEMANN K, COLLINS G S, MELOSH H J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets [J]. Icarus, 2006, 180(2): 514–527. doi: 10.1016/j.icarus.2005.10.013
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  50
  • PDF下载量:  10
出版历程
  • 收稿日期:  2025-09-08
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-11-11
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回