原位高压下聚偏二氟乙烯(PVDF)的结构相变

张升瀚 李婷 张晓军 陈志强

张升瀚, 李婷, 张晓军, 陈志强. 原位高压下聚偏二氟乙烯(PVDF)的结构相变[J]. 高压物理学报. doi: 10.11858/gywlxb.20251174
引用本文: 张升瀚, 李婷, 张晓军, 陈志强. 原位高压下聚偏二氟乙烯(PVDF)的结构相变[J]. 高压物理学报. doi: 10.11858/gywlxb.20251174
ZHANG Shenghan, LI Ting, ZHANG Xiaojun, CHEN Zhiqiang. Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251174
Citation: ZHANG Shenghan, LI Ting, ZHANG Xiaojun, CHEN Zhiqiang. Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251174

原位高压下聚偏二氟乙烯(PVDF)的结构相变

doi: 10.11858/gywlxb.20251174
基金项目: 深圳市科技计划项目(KQTD20190929172532382);国家自然科学基金委-中国工程物理研究院NSAF联合基金(U1530402)
详细信息
    作者简介:

    张升瀚(2000-),男,硕士研究生,主要从事高压下材料结构与物理性质的关联研究. E-mail:shenghan.zhang@hpstar.ac.cn

    通讯作者:

    陈志强(1978-),男,博士,研究员,主要从事功能材料在极端条件下的结构与性能研究. E-mail:chenzq@hpstar.ac.cn

  • 中图分类号: O521.2; TQ36.2

Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure

  • 摘要: 聚偏二氟乙烯(polyvinylidene fluoride,PVDF)是一种多用途的半结晶聚合物,具有优异的压电、热释电和介电性能,被广泛应用于传感器、能源设备和生物医学等领域。PVDF的性能受结晶度和多晶结构(αβγδε)的影响,其中,极性β相比非极性α相具有更优异的机电性能。然而,α相仍然是热力学最稳定和最容易获得的形式。利用原位X射线衍射和傅里叶红外光谱技术,研究了PVDF在高压下的结构演变。在常压条件下,PVDF粉体主要以 α相存在,并伴有少量β相。随着压力不断升高(0~20 GPa),α相逐渐减少,新的衍射峰和振动带位移表明发生了αββγ相变,β相含量显著增加,γ相随之生成。当压力进一步升高至20 GPa以上时,晶格发生严重畸变,晶体长程有序结构被破坏,导致衍射峰展宽并最终非晶化。研究结果揭示了压力诱导下 PVDF分子链重排与多晶型转化之间的复杂相互作用,阐明了其高压相变路径与结构演化规律,不仅深化了对PVDF结构-性能关系的理解,也为其在极端环境下的性能调控与高压技术应用提供了理论依据。

     

  • 图  (a) λ=1.541 8 Å 时PVDF粉末的XRD谱,(b) 使用布拉格方程(=2dsin θ)计算得到的λ=0.619 9 Å 时PVDF粉末的XRD谱,(c) 常压和1.1 GPa下PVDF粉末的XRD谱对比

    Figure  1.  (a) XRD spectrum of powdered PVDF (λ=1.541 8 Å); (b) XRD spectrum of powdered PVDF calculated using the Bragg equation (=2dsin θ) for λ=0.619 9 Å; (c) comparison of XRD spectra of powdered PVDF at atmospheric pressure and 1.1 GPa

    图  (a) PVDF粉末在不同压力下的XRD谱,(b) PVDF结晶相分子链构型

    Figure  2.  (a) XRD patterns of PVDF powder under different pressures; (b) molecular chain configuration of PVDF crystal phase

    图  (a) 不同压力下PVDF粉末的FTIR光谱,(b) PVDF粉末中α1α2α3β1β2β3的FTIR吸收峰的压力诱发频移

    Figure  3.  (a) FTIR spectra of PVDF powder under different pressures; (b) pressure-induced shifts of FTIR absorption peaks for α1, α2, α3, β1, β2, β3 of PVDF powder

    表  1  PVDF主要晶型的结构和性能参数

    Table  1.   Structure and performance parameters of the main crystalline forms of PVDF

    Crystal phase Crystal system Molecular chain conformation Polarity Space group Lattice parameters
    α Monoclinic TGTG´ Nonpolar P21/c a=4.96 Å,
    b=9.64 Å,
    c=4.62 Å,
    α0=β0=γ0=90°
    β Orthorhombic TTTT Strongly polar Cm2m a=8.58 Å,
    b=4.91 Å,
    c=2.56 Å,
    α0=β0=γ0=90°
    Unoriented-γ Monoclinic TTTGTTTG´ Weakly polar P21/c a=4.97 Å,
    b=9.66 Å,
    c=2.58 Å,
    α0=γ0=90°,
    β0=97°
    Oriented-γ Orthorhombic TTTGTTTG´ Weakly polar P21/c a=4.97 Å,
    b=9.66 Å,
    c=9.18 Å,
    α0=γ0=90°,
    β0=92.9°
    下载: 导出CSV
  • [1] DUAN B Y, WU K F, CHEN X Y, et al. Bioinspired PVDF piezoelectric generator for harvesting multi-frequency sound energy [J]. Advanced Electronic Materials, 2023, 9(8): 2300348. doi: 10.1002/aelm.202300348
    [2] FAN W, LEI R X, DOU H, et al. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor [J]. Nature Communications, 2024, 15(1): 3509. doi: 10.1038/S41467-024-47810-7
    [3] MU J L, XIAN S, YU J B, et al. Synergistic enhancement properties of a flexible integrated PAN/PVDF piezoelectric sensor for human posture recognition [J]. Nanomaterials, 2022, 12(7): 1155. doi: 10.3390/NANO12071155
    [4] ZOU X X, ZHU R J, CHEN X, et al. PVDF piezoelectric sensor based on solution blow spinning fibers for structural stress/strain health monitoring [J]. Smart Materials and Structures, 2024, 33(4): 045006. doi: 10.1088/1361-665X/ad2d6a
    [5] ZHOU H J, ZHANG Z J, SUN C X, et al. Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires [J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51506–51516. doi: 10.1021/acsami.0c15414
    [6] KUMAR A, KUMAR R, SATAPATHY D K. Bi2Se3-PVDF composite: a flexible thermoelectric system [J]. Physica B: Condensed Matter, 2020, 593: 412275. doi: 10.1016/j.physb.2020.412275
    [7] PAI Y H, XU C, ZHU R Y, et al. Piezoelectric-augmented thermoelectric ionogels for self-powered multimodal medical sensors [J]. Advanced Materials, 2025, 37(6): 2414663. doi: 10.1002/adma.202414663
    [8] FERREIRA A, COSTA C M, CORREA M A, et al. Thermoelectric study of Co2FeAl thin films grown onto flexible P(VDF-TrFE-CFE) terpolymer [J]. Journal of Alloys and Compounds, 2023, 956: 170333. doi: 10.1016/J.JALLCOM.2023.170333
    [9] TIWARI V, SRIVASTAVA G. Effect of thermal processing conditions on the structure and dielectric properties of PVDF films [J]. Journal of Polymer Research, 2014, 21(11): 587. doi: 10.1007/s10965-014-0587-0
    [10] WANG Z, XUE W Q, YANG Y Z, et al. PMMA brush-modified graphene for flexible energy storage PVDF dielectric films [J]. Composites Communications, 2023, 37: 101411. doi: 10.1016/j.coco.2022.101411
    [11] PADURARIU L, BRUNENGO E, CANU G, et al. Role of microstructures in the dielectric properties of PVDF-based nanocomposites containing high-permittivity fillers for energy storage [J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13535–13544. doi: 10.1021/acsami.2c23013
    [12] CHEN X L, SHI Y H, ZHANG K, et al. Synergistically depressed dielectric loss and elevated breakdown strength in core@double-shell structured Cu@CuO@MgO/PVDF nanocomposites [J]. Polymer, 2024, 307: 127321. doi: 10.1016/j.polymer.2024.127321
    [13] CHEN Y X, CAO L L, SU Y L, et al. Enhancement of dielectric properties in flexible Ti3C2Tx/PVDF composite films [J]. Ceramics International, 2024, 50(3): 4323–4331. doi: 10.1016/J.CERAMINT.2023.11.016
    [14] LOVINGER A J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase [J]. Macromolecules, 1982, 15(1): 40–44. doi: 10.1021/ma00229a008
    [15] 陈雨晴, 周峻, 吴锴, 等. 聚偏二氟乙烯(PVDF)多晶型特征的研究进展 [J]. 绝缘材料, 2022, 55(4): 1–12. doi: 10.16790/j.cnki.1009-9239.im.2022.04.001

    CHEN Y Q, ZHOU J, WU K, et al. Research progress in polyvinylidene fluoride (PVDF) polycrystalline characteristics [J]. Insulating Materials, 2022, 55(4): 1–12. doi: 10.16790/j.cnki.1009-9239.im.2022.04.001
    [16] GREGORIO JR R, UENO E M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF) [J]. Journal of Materials Science, 1999, 34(18): 4489–4500. doi: 10.1023/A:1004689205706
    [17] WANG W J, FAN H Q, YE Y X. Effect of electric field on the structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory [J]. Polymer, 2010, 51(15): 3575–3581. doi: 10.1016/j.polymer.2010.05.021
    [18] LI L, ZHANG M Q, RONG M Z, et al. Studies on the transformation process of PVDF from α to β phase by stretching [J]. RSC Advances, 2014, 4(8): 3938–3943. doi: 10.1039/C3RA45134H
    [19] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
    [20] CHAUHAN A, CHAUHAN P. Powder XRD technique and its applications in science and technology [J]. Journal of Analytical & Bioanalytical Techniques, 2014, 5(5): 212. doi: 10.4172/2155-9872.1000212
    [21] CAI X M, LEI T P, SUN D H, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382–15389. doi: 10.1039/c7ra01267e
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  127
  • PDF下载量:  12
出版历程
  • 收稿日期:  2025-08-27
  • 修回日期:  2025-11-23
  • 录用日期:  2026-01-08
  • 网络出版日期:  2025-11-26

目录

    /

    返回文章
    返回