Al-Cu金属间化合物的机器学习势构建及压缩力学性质

荆琳烁 邵建立 薛峰宁 王裴 徐利春

荆琳烁, 邵建立, 薛峰宁, 王裴, 徐利春. Al-Cu金属间化合物的机器学习势构建及压缩力学性质[J]. 高压物理学报, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141
引用本文: 荆琳烁, 邵建立, 薛峰宁, 王裴, 徐利春. Al-Cu金属间化合物的机器学习势构建及压缩力学性质[J]. 高压物理学报, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141
JING Linshuo, SHAO Jianli, XUE Fengning, WANG Pei, XU Lichun. Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141
Citation: JING Linshuo, SHAO Jianli, XUE Fengning, WANG Pei, XU Lichun. Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141

Al-Cu金属间化合物的机器学习势构建及压缩力学性质

doi: 10.11858/gywlxb.20251141
基金项目: 国家重点研发计划(2021YFB3802300)
详细信息
    作者简介:

    荆琳烁(1998-),男,硕士,主要从事金属材料研究. E-mail:jls_tyut@163.com

    通讯作者:

    邵建立(1979-),男,博士,教授,主要从事材料动态力学响应理论研究. E-mail:shao_jianli@bit.edu.cn

    徐利春(1985-),男,博士,副教授,主要从事新能源材料物性研究. E-mail:xulichun@tyut.edu.cn

  • 中图分类号: TG146.2; O521.9

Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds

  • 摘要: 研究Al-Cu金属间化合物对于Al-Cu合金的优化设计至关重要。分子动力学(molecular dynamics,MD)模拟可以给出Al-Cu合金力学行为的微观过程,而原子间作用势是保证模拟可靠性的关键物理基础。基于第一性原理计算数据构建了Al-Cu体系的深度势(deep potential,DP)函数,并将DP预测的物理性质(晶体结构、能量-体积曲线、压力-体积曲线和声子谱)与密度泛函理论(density functional theory,DFT)和嵌入原子势(embedded atom method,EAM)结果进行了对比分析,验证了DP模型的泛化能力和准确性。基于该DP模型,对5种Al-Cu金属间化合物(θ-Al2Cu、θ′-Al2Cu、Al3Cu、Al4Cu9和AlCu4相)进行了压缩过程MD模拟,给出了θ-Al2Cu、θ′-Al2Cu和AlCu4等结构屈服时的特征规律:θ-Al2Cu、θ′-Al2Cu和AlCu4的屈服应力和剪应力随应变率的升高而增大,屈服应变也相应提高。这一现象源于声子拖曳对原子滑移的阻碍增强。其中,θ-Al2Cu的抗压缩性能最好,在4×109 s−1应变率下压缩到17.4%时屈服,屈服强度为51.15 GPa,并产生螺位错,原子沿着[$ \overline{1}11 $]、[111]和[$11 \overline{1} $]方向滑移;θ′-Al2Cu压缩到10.0%时屈服,原子在垂直于压缩方向的平面内滑移;AlCu4相压缩到13.4%时屈服,原子沿着[401]和[$40 \overline{1} $]方向滑移。

     

  • 图  (a)压缩的初始结构,(b) 5种金属间化合物在300 K下弛豫过程中σzz和温度随时间变化的曲线,(c) 5种金属间化合物的晶体结构

    Figure  1.  (a) Initial structure of compression; (b) curves of σzz and temperature over time during the relaxation process of five intermetallic compounds at 300 K; (c) crystal structures of five intermetallic compounds

    图  DP模型与DFT的预测结果对比

    Figure  2.  Comparison of the prediction results of DP model and DFT

    图  DP模型、EAM模型对8种Al-Cu金属间化合物的基态能量(a)和形成能(b)的预测结果与DFT模型预测结果的对比

    Figure  3.  Comparison of the prediction results of DP and EAM model for ground state energy (a) and formation energy (b) of eight Al-Cu intermetallic compounds with those of the DFT model

    图  8种Al-Cu金属间化合物的E-V曲线和p-V曲线

    Figure  4.  E-V and p-V curves of eight Al-Cu intermetallic compounds

    图  3种Al-Cu金属间化合物的声子谱

    Figure  5.  Phonon spectra of three Al-Cu intermetallic compounds

    图  300 K、不同应变率压缩下5种Al-Cu金属间化合物在[001]方向的应力-应变曲线和剪应力-应变曲线

    Figure  6.  Stress-strain curves and shear stress-strain curves of five intermetallic compounds subjected to compression at various strain rates in the [001] direction at 300 K

    图  Al4Cu9的(a) 应力-应变曲线,(b)原子应变切片,(c)剪应力分布,(d) σzz切片和(e)原子能量切片

    Figure  7.  (a) Stress-strain curve, (b) atomic strain slice, (c) shear stress distribution, (d) σzz slice and (e) atomic energy slice of Al4Cu9

    图  Al4Cu9相原子的能量(a)~(b)和温度(c)~(d)切片

    Figure  8.  (a)−(b) Energy and (c)−(d) temperature slices of Al4Cu9 phase atoms

    图  θ-Al2Cu的(a) σzz-应变曲线、(b)剪应力分布、(c)原子移动轨迹和(d)原子应变切片

    Figure  9.  (a) σzz-strain curve, (b) shear stress distribution, (c) atomic movement trajectory and (d) atomic strain slice of θ-Al2Cu

    图  10  θ-Al2Cu相原子的温度、σzz和能量切片

    Figure  10.  Temperature, σzz, and energy slices of θ-Al2Cu phase atoms

    图  11  θ′-Al2Cu的(a) 应力 -应变曲线、(b)剪应力分布、(c)原子移动轨迹和(d)原子应变切片

    Figure  11.  (a) Stress-strain curve, (b) shear stress distribution, (c) atomic movement trajectory and (d) atomic strain slice of the θ′-Al2Cu phase

    图  12  θ′-Al2Cu相原子的温度、 σzz和能量切片

    Figure  12.  Temperature, σzz and energy slices of θ′-Al2Cu phase atoms

    图  13  AlCu4相的(a) 应力-应变曲线、(b)原子应变切片、(c)剪应力分布和(d)原子移动轨迹

    Figure  13.  (a) Stress-strain curve, (b) atomic strain slice, (c) shear stress distribution and (d) atomic movement trajectory of AlCu4 phase

    图  14  AlCu4相原子的温度、σzz和能量切片

    Figure  14.  Temperature, σzz and energy slices of AlCu4 phase atoms

    图  15  Al3Cu相的(a) 应力-应变曲线、(b) CNA分析、(c)相结构随应变的演化规律和(d)位错曲线

    Figure  15.  (a) Stress-strain curve, (b) CNA analysis, (c) evolution of phase structure with strain and (d) dislocation curves of Al3Cu phase

    图  16  Al3Cu相原子的温度、σzz和能量切片

    Figure  16.  Temperature, σzz and energy slices of Al3Cu phase atoms

    表  1  Al-Cu二元金属间化合物基态下的晶格常数、形成焓和结合能

    Table  1.   Lattice constants, enthalpy of formation, and binding energy of Al-Cu binary intermetallic compounds in the ground state

    Compound Space group a b c ΔH/(eV/atom) ΔE/eV Source
    θ-Al2Cu I4/mcm 6.075 6.075 4.870 −0.133 −3.146 This work
    I4/mcm 6.073 6.073 4.879 −0.163 −3.850 Ref. [46]
    θ′-Al2Cu I4/mmm 4.061 4.061 5.702 −0.159 −3.173 This work
    I4/mmm 4.087 4.087 5.822 −0.149 −3.836 Ref. [46]
    Al3Cu Pm3m 3.924 3.924 3.924 −0.019 −2.953 This work
    Pm3m 3.938 3.938 3.938 −0.029 −3.715 Ref. [46]
    Ω-Al2Cu P4/mmm 4.105 4.105 2.891 −0.010 −3.024 This work
    P4/mmm 4.137 4.137 2.875 −0.016 −3.704 Ref. [46]
    1-AlCu3 Pm3m 3.637 3.637 3.637 −0.168 −3.582 This work
    Pm3m 3.692 3.692 3.692 −0.170 −3.865 Ref. [46]
    Pm3m 3.641 3.641 3.641 Ref. [47]
    1-AlCu Pm3m 2.998 2.998 2.998 −0.136 −3.310 This work
    Pm3m 2.998 2.998 2.998 −0.136 −3.826 Ref. [46]
    Al3Cu2 Pm3m1 4.092 4.092 4.993 −0.137 −3.215 This work
    Pm3m1 4.147 4.147 5.059 −0.145 −3.834 Ref. [46]
    Pm3m1 4.122 4.122 5.114 Ref. [48]
    AlCu4 P213 6.244 6.244 6.244 −0.111 −3.573 This work
    P213 6.331 6.331 6.331 −0.109 −3.804 Ref. [46]
    2-AlCu3 P63/mmc 5.138 5.138 4.206 −0.175 −3.590 This work
    P63/mmc 5.223 5.223 4.250 −0.178 −3.872 Ref. [46]
    Al4Cu15 P4/mmm 3.609 3.609 18.456 −0.095 −3.548 This work
    P4/mmm 3.677 3.677 18.034 −0.093 −3.788 Ref. [46]
    3-AlCu3 Fm3m 5.776 5.776 5.776 −0.154 −3.568 This work
    Fm3m 5.858 5.858 5.858 −0.163 −3.857 Ref. [46]
    Fm3m 5.798 5.798 5.798 Ref. [49]
    4-AlCu3 Pmmn 4.173 4.512 5.107 −0.180 −3.594 This work
    2-AlCu C12/m1 4.056 6.315 6.325 −0.199 −3.373 This work
    Al4Cu9 P43m 8.618 8.618 8.618 −0.202 −3.561 This work
    P43m 8.738 8.738 8.738 −0.203 −3.896 Ref. [46]
    2-Al3Cu P4/mmm 2.778 2.778 7.513 −0.062 −2.995 This work
    P4/mmm 2.802 2.802 7.732 −0.082 −3.768 Ref. [46]
    下载: 导出CSV

    表  2  Al-Cu二元金属间化合物基态弹性模量

    Table  2.   Elastic modulus of Al-Cu binary intermetallic compounds in ground state

    Compound Space group B/GPa Em/GPa G/GPa ν B/G
    θ-Al2Cu I4/mcm 76.10 119.43 48.22 0.24 1.58
    θ′-Al2Cu I4/mmm 85.39 142.68 58.40 0.22 1.46
    Al3Cu Pm3m 86.15 133.73 53.87 0.24 1.60
    Ω-Al2Cu P4/mmm 88.10 93.80 35.46 0.32 2.48
    2-AlCu C12/m1 48.31 136.59 66.43 0.03 0.73
    Al3Cu2 P3ml 77.21 104.28 40.90 0.27 1.89
    AlCu4 P213 80.98 112.41 44.30 0.27 1.83
    Al4Cu9 P43m 106.51 191.91 79.98 0.20 1.33
    下载: 导出CSV
  • [1] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design (1980–2015), 2014, 56: 862–871. doi: 10.1016/j.matdes.2013.12.002
    [2] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials [J]. Progress in Aerospace Sciences, 2018, 97: 22–34. doi: 10.1016/j.paerosci.2018.01.001
    [3] LI S S, YUE X, LI Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. Journal of Materials Research and Technology, 2023, 27: 944–983. doi: 10.1016/j.jmrt.2023.09.274
    [4] DE SOUSA ARAUJO J V, MILAGRE M X, FERREIRA R O, et al. Microstructural characteristics of the al alloys: the dissimilarities among the 2XXX alloys series used in aircraft structures [J]. Metallography, Microstructure, and Analysis, 2020, 9(5): 744–758. doi: 10.1007/s13632-020-00688-5
    [5] HE S, CHEN S, ZHAO Y Q, et al. Study on the intelligent model database modeling the laser welding for aerospace aluminum alloy [J]. Journal of Manufacturing Processes, 2021, 63: 121–129. doi: 10.1016/j.jmapro.2020.04.043
    [6] SETTLES G S, KEANE B T, ANDERSON B W, et al. Shock waves in aviation security and safety [J]. Shock Waves, 2003, 12(4): 267–275. doi: 10.1007/s00193-002-0162-1
    [7] THORPE J. Fatalities and destroyed aircraft due to bird strikes, 1912–2002 [J]. Modern Language Journal, 2003, 9(6): 375–376. doi: 10.1530/endoabs.37.EP326
    [8] CORNMAN L B, MORSE C S, CUNNING G. Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements [J]. Journal of Aircraft, 2012, 32(1): 171–177. doi: 10.2514/3.46697
    [9] BRAMBERGER M, DÖRNBRACK A, WILMS H, et al. Vertically propagating mountain waves—a hazard for high-flying aircraft? [J]. Journal of Applied Meteorology and Climatology, 2018, 57(9): 1957–1975. doi: 10.1175/JAMC-D-17-0340.1
    [10] YANG P P, YUE W H, LI J, et al. Review of damage mechanism and protection of aero-engine blades based on impact properties [J]. Engineering Failure Analysis, 2022, 140: 106570. doi: 10.1016/j.engfailanal.2022.106570
    [11] SUN D Q, WANG Y X, ZHANG X Y, et al. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys [J]. Superlattices and Microstructures, 2016, 100: 112–119. doi: 10.1016/j.spmi.2016.09.012
    [12] WOLVERTON C. First-principles prediction of equilibrium precipitate shapes in Al-Cu alloys [J]. Philosophical Magazine Letters, 1999, 79(9): 683–690. doi: 10.1080/095008399176724
    [13] GUINIER A. Structure of age-hardened aluminium-copper alloys [J]. Nature, 1938, 142(3595): 569–570. doi: 10.1038/142569b0
    [14] NAYAK S K, HUNG C J, HEBERT R J, et al. Atomistic origins of Guinier-Preston zone formation and morphology in Al-Cu and Al-Ag alloys from first principles [J]. Scripta Materialia, 2019, 162: 235–240. doi: 10.1016/j.scriptamat.2018.11.031
    [15] ZHOU Q, WANG J, MISRA A, et al. Atomistic study of fundamental character and motion of dislocations in intermetallic Al2Cu [J]. International Journal of Plasticity, 2016, 87: 100–113. doi: 10.1016/j.ijplas.2016.09.005
    [16] WADA M, KITA H, MORI T. FIM observation of GP zones in an Al-4%Cu alloy [J]. Acta Metallurgica, 1985, 33(9): 1631–1636. doi: 10.1016/0001-6160(85)90158-0
    [17] WANG R H, WEN Y, CHEN B A. Sn microalloying Al-Cu alloys with enhanced fracture toughness [J]. Materials Science and Engineering: A, 2021, 814: 141243. doi: 10.1016/j.msea.2021.141243
    [18] GUO C C, ZHANG R Z, LI L, et al. Multiscale analysis of Al4Cu9 intermetallic compounds on shock Hugoniot of Al-Cu composites: experiments and simulations [J]. Composite Structures, 2025, 355: 118866. doi: 10.1016/j.compstruct.2025.118866
    [19] DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Influence of spherical converging shock waves on the structure of Al-2.4% Mg-5.5% Zn alloy [J]. Journal de Physique Ⅳ, 2006, 134: 1003–1008. doi: 10.1051/jp4:2006134153
    [20] SINGH C V, WARNER D H. Mechanisms of Guinier-Preston zone hardening in the athermal limit [J]. Acta Materialia, 2010, 58(17): 5797–5805. doi: 10.1016/j.actamat.2010.06.055
    [21] KRASNIKOV V S, MAYER A E. Modeling of plastic localization in aluminum and Al-Cu alloys under shock loading [J]. Materials Science and Engineering: A, 2014, 619: 354–363. doi: 10.1016/j.msea.2014.09.105
    [22] YANILKIN A V, KRASNIKOV V S, KUKSIN A Y, et al. Dynamics and kinetics of dislocations in Al and Al-Cu alloy under dynamic loading [J]. International Journal of Plasticity, 2014, 55: 94–107. doi: 10.1016/j.ijplas.2013.09.008
    [23] POGORELKO V V, MAYER A E. Propagation of shock waves and fracture in the Al-Cu composite: numerical simulation [J]. Journal of Physics: Conference Series, 2015, 653: 012046. doi: 10.1088/1742-6596/653/1/012046
    [24] MOJUMDER S. Molecular dynamics study of plasticity in Al-Cu alloy nanopillar due to compressive loading [J]. Physica B: Condensed Matter, 2018, 530: 86–89. doi: 10.1016/j.physb.2017.10.119
    [25] TIAN X, CUI J Z, YANG M, et al. Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent {111} Cu-Al multilayers [J]. International Journal of Mechanical Sciences, 2020, 172: 105414. doi: 10.1016/j.ijmecsci.2019.105414
    [26] CAI J, YE Y Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys [J]. Physical Review B, 1996, 54(12): 8398–8410. doi: 10.1103/PhysRevB.54.8398
    [27] APOSTOL F, MISHIN Y. Interatomic potential for the Al-Cu system [J]. Physical Review B, 2011, 83(5): 054116. doi: 10.1103/PhysRevB.83.054116
    [28] JOHNSON R A. Alloy models with the embedded-atom method [J]. Physical Review B, 1989, 39(17): 12554–12559. doi: 10.1103/PhysRevB.39.12554
    [29] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects [J]. Science, 2015, 349(6245): 255–260. doi: 10.1126/science.aaa8415
    [30] LEE K, YOO D, JEONG W, et al. SIMPLE-NN: an efficient package for training and executing neural-network interatomic potentials [J]. Computer Physics Communications, 2019, 242: 95–103. doi: 10.1016/j.cpc.2019.04.014
    [31] STANLEY K O, CLUNE J, LEHMAN J, et al. Designing neural networks through neuroevolution [J]. Nature Machine Intelligence, 2019, 1(1): 24–35. doi: 10.1038/s42256-018-0006-z
    [32] WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics [J]. Computer Physics Communications, 2018, 228: 178–184. doi: 10.1016/j.cpc.2018.03.016
    [33] ZHANG L F, WANG H, CAR R, et al. Phase diagram of a deep potential water model [J]. Physical Review Letters, 2021, 126(23): 236001. doi: 10.1103/PhysRevLett.126.236001
    [34] WANG F, SUN Y, CHENG J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes [J]. Journal of the American Chemical Society, 2023, 145(7): 4056–4064. doi: 10.1021/jacs.2c11793
    [35] JIANG W R, ZHANG Y Z, ZHANG L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chinese Physics B, 2021, 30(5): 050706. doi: 10.1088/1674-1056/abf134
    [36] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [37] KRESSE G, FURTHMÜLLER J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50. doi: 10.1016/0927-0256(96)00008-0
    [38] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [39] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [40] TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
    [41] ZHANG Y Z, WANG H D, CHEN W J, et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Computer Physics Communications, 2020, 253: 107206. doi: 10.1016/j.cpc.2020.107206
    [42] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [43] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [44] STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021. doi: 10.1088/0965-0393/20/4/045021
    [45] STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [46] 孙凤儿. 铝铜合金金属间化合物及界面性能的第一性原理研究 [D]. 太原: 中北大学, 2021: 34−38.

    SUN F E. First principles study on intermetallic compounds and interfacial properties of aluminum-copper alloys [D]. Taiyuan: North University of China, 2021: 34−38.
    [47] ZHOU W, LIU L J, LI B L, et al. Structural, elastic, and electronic properties of Al-Cu intermetallics from first-principles calculations [J]. Journal of Electronic Materials, 2009, 38(2): 356–364. doi: 10.1007/s11664-008-0587-0
    [48] YANG C D, LI W, ZHI W. Study on mechanical behavior and electronic structures of Al-Cu intermetallic compounds based on first-principles calculations [J]. Solid State Communications, 2011, 151(18): 1270–1274. doi: 10.1016/j.ssc.2011.05.040
    [49] CHEN H C, YANG L J, LONG J P. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds [J]. Superlattices and Microstructures, 2015, 79: 156–165. doi: 10.1016/j.spmi.2014.11.005
    [50] WANG C, CHEN J, LIANG S H, et al. First-principles calculations to investigate pressure effect on structural, elastic and thermodynamic properties of AlCu, Al2Cu and Al4Cu9 [J]. Vacuum, 2022, 203: 111279. doi: 10.1016/j.vacuum.2022.111279
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  152
  • PDF下载量:  16
出版历程
  • 收稿日期:  2025-07-22
  • 修回日期:  2025-09-01
  • 网络出版日期:  2025-09-17
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回