工业电子雷管点火电阻能量转换特性及温度场仿真研究

李洪伟 张立果 周恩 梁昊 杨霖 章万龙

李洪伟, 张立果, 周恩, 梁昊, 杨霖, 章万龙. 工业电子雷管点火电阻能量转换特性及温度场仿真研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20251124
引用本文: 李洪伟, 张立果, 周恩, 梁昊, 杨霖, 章万龙. 工业电子雷管点火电阻能量转换特性及温度场仿真研究[J]. 高压物理学报. doi: 10.11858/gywlxb.20251124
LI Hongwei, ZHANG Liguo, ZHOU En, LIANG Hao, YANG Lin, ZHANG Wanlong. Energy Conversion Characteristics and Temperature Field Simulation of Ignition Resistors for Industrial Electronic Detonators[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251124
Citation: LI Hongwei, ZHANG Liguo, ZHOU En, LIANG Hao, YANG Lin, ZHANG Wanlong. Energy Conversion Characteristics and Temperature Field Simulation of Ignition Resistors for Industrial Electronic Detonators[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251124

工业电子雷管点火电阻能量转换特性及温度场仿真研究

doi: 10.11858/gywlxb.20251124
基金项目: 安徽高校自然科学研究项目(2022AH050838)
详细信息
    作者简介:

    李洪伟(1979-),男,硕士,教授,主要从事爆炸安全与控制爆破技术研究. E-mail:1227002529@qq.com

  • 中图分类号: TJ453

Energy Conversion Characteristics and Temperature Field Simulation of Ignition Resistors for Industrial Electronic Detonators

  • 摘要: 为了研究点火电阻发火过程中温度的动态变化,解决储能电容-点火电阻体系的匹配性问题,通过电热实验、红外温度测量和数值模拟方法,对不同电容放电电压下点火电阻的电压-电流变化和温度变化进行测量,并结合未熔断样品的表面情况,确定点火电阻的临界熔断电压,得出点火电阻的电特性规律和温度变化规律。结果表明:在相同电压下,桥膜式直线型点火电阻的熔断时间最短;相同阻值下,桥膜式点火电阻的熔断时间和升温时间比桥丝式更短,能达到的最高温度也更高。数值仿真结果与实验数据吻合良好,验证了模型的准确性,同时揭示了桥丝式和桥膜式S型点火电阻在通电过程中热量易在拐角处积累并率先发生相变的规律。

     

  • 图  桥膜式点火电阻的显微图像

    Figure  1.  Microscope images of bridge-film ignition resistor

    图  桥膜式点火电阻的SEM图像

    Figure  2.  SEM images of bridge-film type ignition resistor

    图  待测样品

    Figure  3.  Samples to be tested

    图  实验测试系统示意图

    Figure  4.  Schematic diagram of the experimental testing system

    图  桥丝式点火电阻的几何模型

    Figure  5.  Geometric models of bridge-wire ignition resistors

    图  桥膜式点火电阻的几何模型

    Figure  6.  Geometry models of the bridge-film ignition resistors

    图  桥丝式点火元件的电压分布

    Figure  7.  Voltage distribution of bridge-wire ignition element

    图  桥膜式点火元件的电压分布

    Figure  8.  Voltage distribution of bridge-film ignition element

    图  点火电阻熔断时U-I-R曲线

    Figure  9.  U-I-R curves of ignition resistor fusing

    图  10  点火电阻未熔断时的U-I-R曲线

    Figure  10.  U-I-R curves of the unfused ignition resistor

    图  11  点火电阻的功率和能量曲线

    Figure  11.  Power and energy curves of the ignition resistor

    图  12  不同电压下点火电阻的输入能量及能量利用率

    Figure  12.  Input energy and energy utilization rate of ignition resistor at different voltages

    图  13  不同电压下点火电阻发火过程的温度变化

    Figure  13.  Temperature changes of ignition resistor during ignition process at different voltages

    图  14  不同电压下点火电阻的最高温度及升温时间变化

    Figure  14.  Changes in the highest temperature and heating time of the ignition resistor at different voltages

    图  15  实验后桥丝式点火电阻表面情况

    Figure  15.  Surface conditions of the bridge-wire ignition resistor after the experiment

    图  16  桥膜式点火电阻发火过程的高速摄影图像

    Figure  16.  High-speed photographic diagrams of the ignition process of the bridge-film ignition resistors

    图  17  实验后桥膜式点火电阻的表面形貌

    Figure  17.  Surface topography of the bridge-film ignition resistors after the experiment

    图  18  直径为30 μm的桥丝式点火电阻的温度分布云图

    Figure  18.  Temperature distribution of the bridge-wire ignition resistor with diameter of 30 μm

    图  19  桥丝式点火电阻桥区表面的平均温度变化

    Figure  19.  Variations of the average temperature of the bridge area of the bridge-wire ignition resistor

    图  20  S型桥膜的温度分布云图

    Figure  20.  Temperature distribution of the S type bridge-film

    图  21  桥膜式点火电阻桥区表面的平均温度变化

    Figure  21.  Variations of the average surface temperature of the bridge area of the bridge-film ignition resistor

    表  1  实验方案

    Table  1.   Experimental scheme

    Sample Igniter type Dimension Capacitor Capacitor charging voltage/V
    1 Bridge-wire igniter $\varnothing $30 μm Liquid aluminum
    capacitor
    8, 10, 12, 14, 16, 18, 20, 22
    2 Bridge-wire igniter $\varnothing $40 μm
    3 Bridge-film igniter Straight type
    4 Bridge-film igniter S type
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    Materials ρb/(kg·m−3) cp/(J·kg−1·K−1) k/(W·m−1·K−1) ε ρ0/(Ω·m) a/K−1
    Copper 8960 385 400.0 6.5 5.998×10−2 5.4×10−3
    Ni-Cr alloy 8400 1.0 1.090×10−6 3.5×10−4
    FR-4 substrate 1900 1369 0.3 4.5
    下载: 导出CSV

    表  3  桥丝式点火电阻的主要尺寸

    Table  3.   Main dimensions of bridge-wire ignition resistor

    Bridge-wire diameter/μmBridge-wire length/mmBridge spacing/mm
    301.311.2
    401.671.5
    下载: 导出CSV

    表  4  桥膜式点火电阻的主要尺寸

    Table  4.   Main dimensions of bridge-film ignition resistors

    TypeLength/μmWidth/μmThickness/μmSpacing/μm
    Straight type590804
    S type2350804170
    下载: 导出CSV

    表  5  点火元件熔断结果

    Table  5.   Fusing results of ignition elements

    Voltage/VBridge-wire igniterBridge-film igniter
    Sample 1Sample 2Sample 3Sample 4
    8Not fusedNot fusedNot fusedNot fused
    10Not fusedNot fusedFusingNot fused
    12Not fusedNot fusedFusingNot fused
    14Not fusedNot fusedFusingFusing
    16FusingNot fusedFusingFusing
    18FusingNot fusedFusingFusing
    20FusingNot fusedFusingFusing
    22FusingNot fusedFusingFusing
    下载: 导出CSV

    表  6  临界熔断电压

    Table  6.   Critical fuse voltage

    Sample Resistance value/Ω Experimental value/V
    1 2.03 15.28
    2 Not fused Not fused
    3 1.92 8.35
    4 7.89 13.62
    下载: 导出CSV

    表  7  点火电阻的平均熔断时间

    Table  7.   Average fusing time of ignition resistor

    Voltage/V Fusing time of bridge-wire ignition resistor/μs Fusing time of bridge-film ignition resistor/μs
    Sample 1 Sample 2 Sample 3 Sample 4
    8 Not fused Not fused Not fused Not fused
    10 Not fused Not fused 153.0 Not fused
    12 Not fused Not fused 103.2 Not fused
    14 Not fused Not fused 65.6 373.6
    16 645.7 Not fused 52.3 329.3
    18 213.5 Not fused 47.6 205.7
    20 166.2 Not fused 36.6 155.6
    22 152.2 Not fused 31.1 129.2
    下载: 导出CSV

    表  8  点火电阻的发火性能参数

    Table  8.   Ignition performance parameters of ignition resistors

    Voltage/VQ/mJSample 1Sample 2Sample 3Sample 4
    E/mJη/%E/mJη/%E/mJη/%E/mJη/%
    83.202.1764.541.3439.862.6077.331.8153.84
    105.003.2464.802.2344.602.4949.802.8256.40
    127.204.7465.833.4247.502.5134.864.2158.47
    149.806.6567.864.9550.512.5526.025.6757.86
    1612.807.4758.366.8753.672.7321.336.3449.53
    1816.208.4151.918.9655.313.1319.325.4633.70
    2020.009.5147.5511.4757.353.4517.254.7223.60
    2224.2010.9845.3714.2358.763.3413.805.3722.19
    下载: 导出CSV

    表  9  点火电阻温度测试结果统计

    Table  9.   Statistics of ignition resistor temperature test results

    Voltage/VSample 1Sample 2Sample 3Sample 4
    Tmax/℃Δt/μsTmax/℃Δt/μsTmax/℃Δt/μsTmax/℃Δt/μs
    8589.13786.67305.001322.50380.00366.36
    10849.15723.33390.24650.001572.57163.33504.63460.00
    121137.10683.33552.75570.001548.8686.67685.38600.00
    141372.342000.00786.70670.001573.8276.671161.891793.33
    161859.50843.331015.09676.671622.6566.671489.121540.00
    181788.21320.001163.21573.331810.2553.331596.17700.00
    201884.61196.671253.71470.001858.3150.001636.78490.00
    221918.36150.001394.04220.001860.9540.001528.09250.00
    下载: 导出CSV

    表  10  桥丝熔断时间的实验值与仿真值的对比

    Table  10.   Comparison between the experimental and simulated values of the bridge-wire fusing time

    Voltage/VFusing time
    Exp./μsSim./μsDeviation/%
    16645.7350.3−45.75
    18213.5201.1−5.81
    20166.2155.8−6.26
    22152.2141.4−7.10
    下载: 导出CSV

    表  11  桥膜熔断时间的实验值与仿真值对比

    Table  11.   Comparison of experimental and simulated values of bridge-film fusing time

    Voltage/V Experimental fusing time/μs Simulated fusing time/μs Deviation/%
    Straight type S type Straight type S type Straight type S type
    10 153.0 145.9 −4.64
    12 103.2 96.2 −6.78
    14 65.6 373.6 61.7 351.9 −5.95 −5.81
    16 52.3 329.3 48.3 313.8 −7.65 −4.71
    18 47.6 205.7 43.5 187.7 −8.61 −8.75
    20 36.6 155.6 33.0 139.7 −9.84 −10.22
    22 31.1 129.2 28.2 113.5 −9.32 −12.15
    下载: 导出CSV
  • [1] 任小明, 姚洪志, 解瑞珍, 等. 镍铬硅薄膜换能元的制备及其发火性能研究 [J]. 火工品, 2024(5): 42–45. doi: 10.3969/j.issn.1003-1480.2024.05.006

    REN X M, YAO H Z, XIE R Z, et al. Study on the preparation and firing property of Ni-Cr-Si thin film transducers [J]. Initiators & Pyrotechnics, 2024(5): 42–45. doi: 10.3969/j.issn.1003-1480.2024.05.006
    [2] 解瑞珍, 薛艳, 任小明, 等. 桥区参数对Ni-Cr薄膜换能元发火性能的影响 [J]. 火工品, 2012(1): 18–20. doi: 10.3969/j.issn.1003-1480.2012.01.006

    XIE R Z, XUE Y, REN X M, et al. Effect of bridge parameters on the firing sensitivity of Ni-Cr alloy thin film transducer elements [J]. Initiators & Pyrotechnics, 2012(1): 18–20. doi: 10.3969/j.issn.1003-1480.2012.01.006
    [3] 任小明, 解瑞珍, 薛艳, 等. Ni-Cr薄膜换能元点火性能研究 [J]. 火工品, 2011(2): 4–6. doi: 10.3969/j.issn.1003-1480.2011.02.002

    REN X M, XIE R Z, XUE Y, et al. Study on firing performance of Ni-Cr film igniting resistor [J]. Initiators & Pyrotechnics, 2011(2): 4–6. doi: 10.3969/j.issn.1003-1480.2011.02.002
    [4] 付帅, 沈瑞琪, 朱朋, 等. 多层Al/Ni含能薄膜在电容放电激励下的能量释放特性和规律 [J]. 含能材料, 2019, 27(2): 155–161. doi: 10.11943/CJEM2018173

    FU S, SHEN R Q, ZHU P, et al. Characteristics and laws of energy release for multilayer Al/Ni RMFs under capacitive discharge excitation [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 155–161. doi: 10.11943/CJEM2018173
    [5] 成一, 陈守文. 电点火头发火过程的时间结构的研究 [J]. 爆破器材, 2001, 30(5): 22–24. doi: 10.3969/j.issn.1001-8352.2001.05.006

    CHENG Y, CHEN S W. Study on the time structure of electric ignition process in fuse head [J]. Explosive Materials, 2001, 30(5): 22–24. doi: 10.3969/j.issn.1001-8352.2001.05.006
    [6] LYU X X, WEI G H, DU X, et al. Numerical simulation of the ignition law for a hot bridge wire electroexplosive device [J]. Measurement Science and Technology, 2023, 34(3): 035014. doi: 10.1088/1361-6501/acf604
    [7] 王科伟, 杨正才, 刘海旭, 等. 钝感Ni-Cr金属桥膜换能元的制备及性能 [J]. 含能材料, 2014, 22(6): 819–823. doi: 10.11943/j.issn.1006-9941.2014.06.020

    WANG K W, YANG Z C, LIU H X, et al. Preparation and characterization of insensitive Ni-Cr metal film igniting component [J]. Chinese Journal of Energetic Materials, 2014, 22(6): 819–823. doi: 10.11943/j.issn.1006-9941.2014.06.020
    [8] LI S, ZHANG L, YUAN C H, et al. The ignition performance of metal film bridge [J]. IOP Conference Series: Earth and Environmental Science, 2021, 692: 022072. doi: 10.1088/1755-1315/692/2/022072
    [9] 焦清介, 赵婉君, 常英珂, 等. 电爆桥膜换能元设计研究 [J]. 火工品, 2023(6): 14–20. doi: 10.3969/j.issn.1003-1480.2023.06.003

    JIAO Q J, ZHAO W J, CHANG Y K, et al. Research on the design of exploding bridge film energy convertor [J]. Initiators & Pyrotechnics, 2023(6): 14–20. doi: 10.3969/j.issn.1003-1480.2023.06.003
    [10] 汪佩兰, 曾象志, 张松正. 灼热桥式火工品桥温的数值模拟 [J]. 北京理工大学学报, 1994, 14(Suppl 1): 66–70.

    WANG P L, ZENG X Z, ZHANG S Z. Numerical simulation of bridge wire temperature in hot bridge wire explosive initiator [J]. Journal of Beijing Institute of Technology, 1994, 14(Suppl 1): 66–70.
    [11] XU Q, YANG Z Q, ZHANG Q H, et al. Simulation and characterization of a thin film Au/Ni micro hot bridge-wire ignition element under capacitor discharging [J]. International Journal of Thermal Sciences, 2016, 102: 100–110. doi: 10.1016/j.ijthermalsci.2015.11.009
    [12] 李慧, 白颖伟, 任炜, 等. 火工品换能元直流激励下温度响应特性仿真研究 [J]. 兵工学报, 2016, 37(Suppl 2): 138–143.

    LI H, BAI Y W, REN W, et al. Simulation research on temperature response characteristics of initiating device transformer under DC excitation [J]. Acta Armamentarii, 2016, 37(Suppl 2): 138–143.
    [13] 闫守阳, 赵河明, 韩晶, 等. 基于电热特性分析的微桥膜设计 [J]. 火工品, 2021(6): 1–5. doi: 10.3969/j.issn.1003-1480.2021.06.001

    YAN S Y, ZHAO H M, HAN J, et al. Design of micro-bridge membrane based on electrothermal analysis [J]. Initiators & Pyrotechnics, 2021(6): 1–5. doi: 10.3969/j.issn.1003-1480.2021.06.001
    [14] 张树养. 影响红外测温的主要因素分析研究 [J]. 工业计量, 2023, 33(5): 16–20. doi: 10.13228/j.boyuan.issn1002-1183.2022.0281

    ZHANG S Y. Analysis and research on the main factorsaffecting infrared temperature measurement [J]. Industrial Metrology, 2023, 33(5): 16–20. doi: 10.13228/j.boyuan.issn1002-1183.2022.0281
    [15] 孙秋香, 宋庆军, 卢慧粉, 等. 扫描电镜能谱仪谱峰鉴别方法 [J]. 理化检验-物理分册, 2018, 54(10): 754–756. doi: 10.11973/lhjy-wl201810009

    SUN Q X, SONG Q J, LU H F, et al. Spectral peak identification method of energy dispersive spectrometer in scanning electron microscope [J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2018, 54(10): 754–756. doi: 10.11973/lhjy-wl201810009
    [16] 底才翔, 孙艳军, 王菲, 等. 激光切割碳纤维复合材料的温度场仿真 [J]. 激光技术, 2020, 44(5): 628–632. doi: 10.7510/jgjs.issn.1001-3806.2020.05.017

    DI C X, SUN Y J, WANG F, et al. Temperature field simulation of laser cut carbon fiber reinforced plastics [J]. Laser Technology, 2020, 44(5): 628–632. doi: 10.7510/jgjs.issn.1001-3806.2020.05.017
    [17] 周庆, 焦清介. Ni-Cr桥丝式电火工品发火规律 [J]. 四川兵工学报, 2015, 36(4): 144–147. doi: 10.11809/scbgxb2015.04.039

    ZHOU Q, JIAO Q J. Study on firing property of Ni-Cr electric hot wire initiating devices [J]. Journal of Ordnance Equipment Engineering, 2015, 36(4): 144–147. doi: 10.11809/scbgxb2015.04.039
    [18] AKAGI H, WATANABE E H, AREDES M. Instantaneous power theory and applications to power conditioning [M]. Hoboken: John Wiley & Sons, 2017: 19–111.
  • 加载中
图(21) / 表(11)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  102
  • PDF下载量:  5
出版历程
  • 收稿日期:  2025-07-07
  • 修回日期:  2025-08-17
  • 网络出版日期:  2025-08-21

目录

    /

    返回文章
    返回