早龄期混凝土-泥岩组合体的冲击动力学特性及损伤特征

潘冲 谢全民 孙金山 周辉 庞朝来 马俊

潘冲, 谢全民, 孙金山, 周辉, 庞朝来, 马俊. 早龄期混凝土-泥岩组合体的冲击动力学特性及损伤特征[J]. 高压物理学报, 2025, 39(12): 124102. doi: 10.11858/gywlxb.20251094
引用本文: 潘冲, 谢全民, 孙金山, 周辉, 庞朝来, 马俊. 早龄期混凝土-泥岩组合体的冲击动力学特性及损伤特征[J]. 高压物理学报, 2025, 39(12): 124102. doi: 10.11858/gywlxb.20251094
PAN Chong, XIE Quanmin, SUN Jinshan, ZHOU Hui, PANG Chaolai, MA Jun. Impact Dynamic Characteristics and Damage Features of Early-Age Concrete-Mudstone Composite[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 124102. doi: 10.11858/gywlxb.20251094
Citation: PAN Chong, XIE Quanmin, SUN Jinshan, ZHOU Hui, PANG Chaolai, MA Jun. Impact Dynamic Characteristics and Damage Features of Early-Age Concrete-Mudstone Composite[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 124102. doi: 10.11858/gywlxb.20251094

早龄期混凝土-泥岩组合体的冲击动力学特性及损伤特征

doi: 10.11858/gywlxb.20251094
基金项目: 国家自然科学基金(52378399);国家重点研发计划(2021-008);湖北省中央引导地方科技发展专项(2024CSA094);精细爆破全国重点实验室博士启动基金(PBSKL-2022-QD-03)
详细信息
    作者简介:

    潘 冲(2001-),男,硕士研究生,主要从事复合体冲击动力学研究. E-mail:pc20010610@163.com

    通讯作者:

    谢全民(1983-),男,博士,副教授,主要从事爆破工程研究. E-mail:xqmblast@jhun.edu.cn

  • 中图分类号: O347.1; O521.9; TU45

Impact Dynamic Characteristics and Damage Features of Early-Age Concrete-Mudstone Composite

  • 摘要: 为研究冲击荷载作用下早龄期混凝土-泥岩组合体的动态力学特性,采用分离式霍普金森压杆装置,结合高速摄影机,对养护龄期为1、3、7 d的组合体试件进行了冲击试验,基于数字图像相关(digital image correlation,DIC)技术分析了试件的位移场和应变场的演化规律,系统揭示了组合体的动态损伤破坏特征。试验结果表明:随着应变率增大,不同龄期组合体试件呈现显著的应变率相关性,其动态强度增长规律符合对数函数模型;耗能密度随入射能线性增长;1、3、7 d龄期组合体表面的最大位移分别为1.564、1.196、0.924 mm,最大应变分别为1.886%、1.352%、1.184%。研究结果揭示了早龄期混凝土-泥岩组合体在冲击荷载作用下的动态力学性能及损伤破坏机制,为隧道爆破施工中围岩-初期支护结构的损伤防控提供了理论依据。

     

  • 图  早龄期混凝土-泥岩组合体试件制备流程

    Figure  1.  Preparation process of early-age concrete-mudstone composite specimens

    图  不同龄期组合体的应力-应变关系

    Figure  2.  Stress-strain relationship of composites at different ages

    图  组合体试件的应力平衡校验

    Figure  3.  Stress balance check of composite specimen

    图  1、3、7 d龄期组合体的应力-应变曲线

    Figure  4.  Stress-strain curves of composites at 1, 3 and 7 d ages

    图  3 d龄期组合体的冲击破坏形态

    Figure  5.  Impact failure patterns of composites at 3 d age

    图  动态强化因子-应变率拟合曲线

    Figure  6.  Fitting curves of dynamic increase factor versus strain rate

    图  1 d龄期组合体的能量演化

    Figure  7.  Energy evolution of the composite at 1 d ages

    图  耗能密度随入射能变化曲线

    Figure  8.  Variations of dissipated energy density with incident energy

    图  0.4 MPa下组合体的冲击破坏过程

    Figure  9.  Impact failure process of the composite under 0.4 MPa

    图  10  0.4 MPa下组合体的位移场变化云图

    Figure  10.  Displacement field contour of the composite under 0.4 MPa

    图  11  0.4 MPa下组合体的应变场变化云图

    Figure  11.  Strain field contour of the composite under 0.4 MPa

    表  1  早龄期混凝土-泥岩组合体的动态力学参数

    Table  1.   Dynamic mechanical parameters of early-age concrete-mudstone composite

    T/dpi/MPavi/(m·s−1)Strain rate/s−1σp/MPaDIF
    10.12.53618.027.66
    0.23.49828.7412.601.165
    0.34.52338.4417.391.607
    0.45.56448.2127.512.543
    30.12.85618.469.89
    0.23.83228.4414.861.138
    0.34.81238.5524.431.871
    0.45.84848.0739.643.035
    70.13.28118.6617.46
    0.24.17228.1022.441.440
    0.35.32238.0632.532.088
    0.46.18748.1953.903.459
    下载: 导出CSV

    表  2  3种龄期组合体的冲击能量计算结果

    Table  2.   Impact energy calculation results for composites at three ages

    T/dStrain rate/s−1WI/JWR/JWT/JWS/JEnergy consumption density/(J·cm−3)
    118.0265.6930.0816.3618.250.027
    28.74102.0357.0919.7025.240.040
    38.44148.6288.1729.0131.440.050
    48.21212.49120.5342.3749.590.079
    318.4677.9941.2715.8920.830.033
    28.44132.5067.3330.4934.680.055
    38.55209.38106.8940.9661.530.098
    48.07268.63131.6356.1280.880.128
    718.66129.2566.4022.2440.610.065
    28.10188.7194.3439.2155.160.088
    38.06293.65142.5952.5298.540.157
    48.19372.55173.5668.95120.040.207
    下载: 导出CSV
  • [1] 钱七虎, 戎晓力. 中国地下工程安全风险管理的现状、问题及相关建议 [J]. 岩石力学与工程学报, 2008, 27(4): 649–655. doi: 10.3321/j.issn:1000-6915.2008.04.001

    QIAN Q H, RONG X L. State, issues and relevant recommendations for security risk management of China’s underground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 649–655. doi: 10.3321/j.issn:1000-6915.2008.04.001
    [2] 袁璞, 徐颖, 薛俊华. 锚固支护深部巷道爆破开挖模型试验研究 [J]. 岩石力学与工程学报, 2016, 35(9): 1830–1836. doi: 10.13722/j.cnki.jrme.2015.1201

    YUAN P, XU Y, XUE J H. Model test of anchorage deep tunnel in blasting excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1830–1836. doi: 10.13722/j.cnki.jrme.2015.1201
    [3] 蒙贤忠, 周传波, 蒋楠, 等. 隧道表面爆破地震波的产生机制及传播特征 [J]. 爆炸与冲击, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217

    MENG X Z, ZHOU C B, JIANG N, et al. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface [J]. Explosion and Shock Waves, 2024, 44(2): 025201. doi: 10.11883/bzycj-2023-0217
    [4] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征 [J]. 振动与冲击, 2020, 39(13): 176–183, 214. doi: 10.13465/j.cnki.jvs.2020.13.026

    JI J J, LI H T, WU F M, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176–183, 214. doi: 10.13465/j.cnki.jvs.2020.13.026
    [5] 胡时胜, 王道荣. 冲击载荷下混凝土材料的动态本构关系 [J]. 爆炸与冲击, 2002, 22(3): 242–246. doi: 10.11883/1001-1455(2002)03-0242-5

    HU S S, WANG D R. Dynamic constitutive relation of concrete under impact [J]. Explosion and Shock Waves, 2002, 22(3): 242–246. doi: 10.11883/1001-1455(2002)03-0242-5
    [6] GUAN X, HOU X, SUN J, et al. Investigating the dynamic behavior and tensile properties of coal gangue shotcrete under impact loading conditions SHPB device [J]. Journal of Building Engineering, 2024, 98: 111060. doi: 10.1016/J.JOBE.2024.111060
    [7] 王洪亮, 范鹏贤, 王明洋, 等. 应变率对红砂岩渐进破坏过程和特征应力的影响 [J]. 岩土力学, 2011, 32(5): 1340–1346. doi: 10.3969/j.issn.1000-7598.2011.05.010

    WANG H L, FAN P X, WANG M Y, et al. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone [J]. Rock and Soil Mechanics, 2011, 32(5): 1340–1346. doi: 10.3969/j.issn.1000-7598.2011.05.010
    [8] AYHAN B, LALE E. Modeling strain rate effect on tensile strength of concrete using damage plasticity model [J]. International Journal of Impact Engineering, 2022, 162: 104132. doi: 10.1016/j.ijimpeng.2021.104132
    [9] 郭东明, 闫鹏洋, 张英实, 等. 喷层混凝土-围岩组合体的循环冲击压缩试验研究 [J]. 振动与冲击, 2019, 38(10): 105–111. doi: 10.13465/j.cnki.jvs.2019.10.016

    GUO D M, YAN P Y, ZHANG Y S, et al. Experimental research on the sprayed concrete-surrounding rock combined body subjected to cyclic impact loadings [J]. Journal of Vibration and Shock, 2019, 38(10): 105–111. doi: 10.13465/j.cnki.jvs.2019.10.016
    [10] ZHOU Z L, LU J Y, CAI X, et al. Influence of interface morphology on dynamic behavior and energy dissipation of bi-material discs [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2339–2352. doi: 10.1016/S1003-6326(22)65951-X
    [11] CALISKAN S, AKYUZ H. Investigation of the speckle patterneffect for displacement assessments by DIC [J]. Journal of Intelligent Manufacturing and Special Equipment, 2024, 5(2): 245–254. doi: 10.1108/JIMSE-01-2024-0002
    [12] 胡良鹏, 孙阳阳, 岳松林, 等. 基于高速DIC的近场冲击下高强混凝土动态压缩性能研究 [J]. 振动与冲击, 2023, 42(12): 77–87, 117. doi: 10.13465/j.cnki.jvs.2023.012.009

    HU L P, SUN Y Y, YUE S L, et al. Investigation of dynamic compressionperformance of high-strength concrete under near-field impact based on high-speed DIC [J]. Journal of Vibration and Shock, 2023, 42(12): 77–87, 117. doi: 10.13465/j.cnki.jvs.2023.012.009
    [13] 邓永兴, 陆晓霞, 李磊, 等. 铝粉动态压缩动力学特性研究 [J]. 振动与冲击, 2022, 41(19): 231–236, 253. doi: 10.13465/j.cnki.jvs.2022.19.030

    DENG Y X, LU X X, LI L, et al. Dynamic compression characteristics of aluminium powder [J]. Journal of Vibration and Shock, 2022, 41(19): 231–236, 253. doi: 10.13465/j.cnki.jvs.2022.19.030
    [14] KUMAR S, TIWARI G, PARAMESWARAN V, et al. Dynamic mechanical behaviour of rock-like materials with a flaw under different orientation and infill conditions [J]. Bulletin of Engineering Geology and the Environment, 2023, 82(9): 345. doi: 10.1007/s10064-023-03365-3
    [15] 李胜林, 刘殿书, 李祥龙, 等. $\varnothing $75 mm分离式霍普金森压杆试件长度效应的试验研究 [J]. 中国矿业大学学报, 2010, 39(1): 93–97.

    LI S L, LIU D S, LI X L, et. al. The effect of specimen length in $\varnothing $75 mm split Hopkinson pressure bar experiment [J]. Journal of China University of Mining & Technology, 2010, 39(1): 93–97.
    [16] 吴文娟, 汪稔, 朱长歧, 等. 珊瑚骨料混凝土动态压缩性能的试验研究 [J]. 建筑材料学报, 2019, 22(1): 7–14. doi: 10.3969/j.issn.1007-9629.2019.01.002

    WU W J, WANG R, ZHU C Q, et al. Experimental study on dynamic compression performance of coral aggregate concrete [J]. Journal of Building Materials, 2019, 22(1): 7–14. doi: 10.3969/j.issn.1007-9629.2019.01.002
    [17] 李夕兵, 王世鸣, 宫凤强, 等. 不同龄期混凝土多次冲击损伤特性试验研究 [J]. 岩石力学与工程学报, 2012, 31(12): 2465–2472. doi: 10.3969/j.issn.1000-6915.2012.12.010

    LI X B, WANG S M, GONG F Q, et al. Experimental study of damage properties of different ages concrete under multiple impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2465–2472. doi: 10.3969/j.issn.1000-6915.2012.12.010
    [18] 刘远, 刘孝通, 杨安旭, 等. 氟硅渣改性硫酸铝基无碱液体速凝剂对水泥性能的影响 [J]. 硅酸盐通报, 2024, 43(6): 2005–2011. doi: 10.16552/j.cnki.issn1001-1625.2024.06.003

    LIU Y, LIU X T, YANG A X, et al. Effect of aluminum sulfate base alkali-free liquid accelerating agent modified by fluorine silicon slag on cement properties [J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2005–2011. doi: 10.16552/j.cnki.issn1001-1625.2024.06.003
    [19] 初建鹏, 冯建程, 周方毅, 等. 基于Taylor杆的高强度钢动态特性研究 [J]. 高压物理学报, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935

    CHU J P, FENG J C, ZHOU F Y, et al. Dynamic mechanical behaviors of high strength steel based on Taylor rod [J]. Chinese Journal of High Pressure Physics, 2025, 39(6): 064101. doi: 10.11858/gywlxb.20240935
    [20] DICK P C, KORKOLIS P Y. Mechanics and full-field deformation study of the ring hoop tension test [J]. International Journal of Solids and Structures, 2014, 51(18): 3042–3057. doi: 10.1016/j.ijsolstr.2014.04.023
    [21] 王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用 [J]. 爆炸与冲击, 2005, 25(1): 17–25. doi: 10.11883/1001-1455(2005)01-0017-09

    WANG L L, WANG Y G. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB [J]. Explosion and Shock Waves, 2005, 25(1): 17–25. doi: 10.11883/1001-1455(2005)01-0017-09
    [22] 王力晓, 陈启东, 刘鑫. 超声动态载荷下混凝土过渡区域的损伤演化 [J]. 高压物理学报, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833

    WANG L X, CHEN Q D, LIU X. Damage evolution in concrete interfacial transition zone with ultrasonic dynamic load [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
    [23] 辛建婷, 席涛, 范伟, 等. 飞秒激光驱动超高应变率加载下铝材料的层裂特性 [J]. 高压物理学报, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904

    XIN J T, XI T, FAN W, et al. The spallation characteristics of Al under ultra-high strain rate loading driven by femtosecond laser [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034102. doi: 10.11858/gywlxb.20210904
    [24] YUSUF N A, KHAIR-ELDEEN W, TSUCHIYA T, et al. Finite element simulation of split Hopkinson pressure bar (SHPB) test to predict the dynamic compressive behavior of glass fiber reinforced polymer (GFRP) composite [J]. Solid State Phenomena, 2024, 363: 61–68. doi: 10.4028/p-myT1Cb
    [25] YAMAGUCHI H, FUJIMOTO K, NOMURA S. Stress-strain relationship for concrete under high triaxial compression, 2 [J]. Nippon Kenchiku Gakkai Kozokei Ronbun Hokokushu, 1989: 50–59.
    [26] 王梦想, 汪海波, 宗琦. 冲击荷载作用下煤矿泥岩能量耗散试验研究 [J]. 煤炭学报, 2019, 44(6): 1716–1725. doi: 10.13225/j.cnki.jccs.2018.0799

    WANG M X, WANG H B, ZONG Q. Experimental study on energy dissipation of mudstone in coal mine under impact loading [J]. Journal of China Coal Society, 2019, 44(6): 1716–1725. doi: 10.13225/j.cnki.jccs.2018.0799
    [27] LU Y Y, YU Y, FENG G L, et al. Experimental study on dynamic mechanical response and crack control mechanism of anchored layered sandstone by DIC technology [J]. Measurement, 2025, 250: 117078. doi: 10.1016/J.MEASUREMENT.2025.117078
    [28] 卿龙邦, 曹国瑞, 管俊峰. 基于DIC方法的混凝土允许损伤尺度试验研究 [J]. 工程力学, 2019, 36(10): 115–121. doi: 10.6052/j.issn.1000-4750.2018.09.0500

    QING L B, CAO G R, GUAN J F. Experimental investigation of the concrete permissible damage scale based on the digital image correlation method [J]. Engineering Mechanics, 2019, 36(10): 115–121. doi: 10.6052/j.issn.1000-4750.2018.09.0500
    [29] FADIJI T, COETZEE C J, OPARA U L. Evaluating the displacement field of paperboard packages subjected to compression loading using digital image correlation (DIC) [J]. Food and Bioproducts Processing, 2020, 123: 60–71. doi: 10.1016/j.fbp.2020.06.008
    [30] 赵永红, 梁海华, 熊春阳, 等. 用数字图像相关技术进行岩石损伤的变形分析 [J]. 岩石力学与工程学报, 2002, 21(1): 73–76. doi: 10.3321/j.issn:1000-6915.2002.01.016

    ZHAO Y H, LIANG H H, XIONG C Y, et al. Deformation measurement of rock damage by digital image correlation method [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1): 73–76. doi: 10.3321/j.issn:1000-6915.2002.01.016
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  63
  • PDF下载量:  11
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-06-13
  • 网络出版日期:  2025-06-19
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回