Physical Mechanisms of “Shock Cooling” at the Molecular Fluid/Window Interface under Shock Loading
-
摘要: 分子流体/窗口“冲击冷却”的物理机制是困扰冲击波物理学界多年的科学问题。对冲击界面冷却效应的物理解释有3种不同观点:分子流体/窗口之间的热平衡、熔融态光学窗口的消光效应和分子流体的冲击响应特性。为此,对比研究了化学活性流体CHBr3及惰性液态氩(LAr)与LiF光学窗口界面的冲击辐射行为和辐射温度变化特征。在相同的冲击压强下,2种介质的界面辐射特性呈现出不同的演变特征,可以认为,界面冷却效应与流体介质及其化学活性密切相关。观测结果表明,界面冷却效应由流体自身冲击响应所致,与热传导机制和窗口熔化消光机制无关。Abstract: The physical mechanism of “shock cooling” at the molecular fluid/window interface has troubled the shock wave physics community for many years and remains unsolved. There are three distinct viewpoints for explaining the cooling effect at the shock interface: thermal equilibrium between the molecular fluid and the window, extinction effect of the molten optical window, and specific shock response of the molecular fluid. This paper comparatively investigates the shock radiation and temperature variation characteristics of the interfaces between the chemically active fluid CHBr3/the inert liquid argon (LAr) and the LiF optical window. Under the same shock pressure, the interface radiation exhibits distinct evolution features for the two liquids, indicating that the interface cooling effect is closely related to the fluid medium and its chemical activity. Therefore, the experimental results of this paper strongly support that the interface cooling effect is caused by the shock response of the fluid itself, rather than heat conduction or window melting extinction.
-
Key words:
- molecular fluid /
- shock loading /
- radiation thermometry /
- shock cooling /
- bromoform /
- liquid argon
-
表 1 实验参数
Table 1. Experimental parameters
Experiment
No.Flyer
materialFlyer velocity/
(km·s–1)Substrate
materialLiquid
materialLiquid
pressure/GPaWindow
materialWindow
pressure/GPa1 Ta 2.92 Al LAr 26 LiF 38 2 Cu 3.08 Al CHBr3 32 LiF 41 3 Ta 3.87 Al LAr 41 LiF 69 4 Cu 4.37 Cu CHBr3 55 LiF 68 表 2 冲击波在液体材料和窗口中的观测温度
Table 2. Observed temperature of liquid material and window under shock loading
Experiment No. Liquid temperature/K Window temperature/K 1 5 700±90 7 700±175 2 3 600±80 3 150±150 3 14 000±70 12 700±100 4 6 350±70 5 300±80 -
[1] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5 [2] SIKKA S K. Behaviour of materials under shock loading conditions [J]. Bulletin of Materials Science, 1992, 15(1): 35–46. doi: 10.1007/BF02745215 [3] 孙毅, 向士凯, 耿华运, 等. 自动校准的多相状态方程建模方法及其在锡中的应用 [J]. 高压物理学报, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709SUN Y, XIANG S K, GENG H Y, et al. Automated calibrated modeling method of multiphase equations of states: applied to tin [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709 [4] 胡建波, 周显明, 谭华. 反向碰撞法测量Sn的高压卸载声速 [J]. 物理学报, 2008, 57(4): 2347–2351. doi: 10.3321/j.issn:1000-3290.2008.04.056HU J B, ZHOU X M, TAN H. Measurements of release sound velocities of tin with reverse-impact method [J]. Acta Physica Sinica, 2008, 57(4): 2347–2351. doi: 10.3321/j.issn:1000-3290.2008.04.056 [5] ZOU X Y, HUANG H W, YAO X H. Flexoelectric energy dissipating mechanism for multi-impact protection [J]. Applied Mathematics and Mechanics, 2025, 46(4): 699–710. doi: 10.1007/s10483-025-3235-6 [6] NELLIS W J, RADOUSKY H B, HAMILTON D C, et al. Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition [J]. The Journal of Chemical Physics, 1991, 94(3): 2244–2257. doi: 10.1063/1.459895 [7] RADOUSKY H B, ROSS M. Shock-induced cooling in high-density fluid nitrogen [J]. High Pressure Research, 1988, 1(1): 39–52. doi: 10.1080/08957958808202479 [8] RADOUSKY H B, NELLIS W J, ROSS M, et al. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures [J]. Physical Review Letters, 1986, 57(19): 2419–2422. doi: 10.1103/PhysRevLett.57.2419 [9] LINDSEY R K, BASTEA S, LYU Y J, et al. Chemical evolution in nitrogen shocked beyond the molecular stability limit [J]. The Journal of Chemical Physics, 2023, 159(8): 084502. doi: 10.1063/5.0157238 [10] CHEN Q F, ZHENG J, GU Y J, et al. Thermophysical properties of multi-shock compressed dense argon [J]. The Journal of Chemical Physics, 2014, 140(7): 074202. doi: 10.1063/1.4865129 [11] ZHENG J, CHEN Q F, GU Y J, et al. Multishock compression properties of warm dense argon [J]. Scientific Reports, 2015, 5(1): 16041. doi: 10.1038/srep16041 [12] ZHENG J, CHEN Q F, GU Y J, et al. Thermodynamics, compressibility, and phase diagram: shock compression of supercritical fluid xenon [J]. The Journal of Chemical Physics, 2014, 141(12): 124201. doi: 10.1063/1.4896071 [13] LI J, ZHOU X M, LI J B. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures [J]. Review of Scientific Instruments, 2008, 79(12): 123107. doi: 10.1063/1.3046279 [14] 周显明, 操秀霞, 李俊, 等. 氟化锂和蓝宝石单晶冲击消光及其对辐射测温的影响 [J]. 原子与分子物理学报, 2012, 29(3): 481–487. doi: 10.3969/j.issn.1000-0364.2012.03.018ZHOU X M, CAO X X, LI J, et al. Shock-induced optical extinction in LiF and sapphire crystals and its significance in the radiant temperature determination [J]. Journal of Atomic and Molecular Physics, 2012, 29(3): 481–487. doi: 10.3969/j.issn.1000-0364.2012.03.018 [15] CAO X X, WU Q, SOKOL M, et al. Superior optical transparency of nano-grain magnesium aluminate spinel at high shock pressure [J]. Applied Physics Letters, 2024, 124(5): 054102. doi: 10.1063/5.0181667 [16] 胡金彪, 谭华, 经福谦. 溴仿在冲击压缩下的光辐射及化学反应 [J]. 高压物理学报, 1996, 10(3): 220–226. doi: 10.11858/gywlxb.1996.03.009HU J B, TAN H, JING F Q. Optic radiations and chemical reactions in bromoform under shock compressions [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 220–226. doi: 10.11858/gywlxb.1996.03.009 [17] DE GIACOMO A, HERMANN J. Laser-induced plasma emission: from atomic to molecular spectra [J]. Journal of Physics D: Applied Physics, 2017, 50(18): 183002. doi: 10.1088/1361-6463/aa6585 [18] ATREYA S K, MAHAFFY P R, NIEMANN H B, et al. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets [J]. Planetary and Space Science, 2003, 51(2): 105–112. doi: 10.1016/S0032-0633(02)00144-7 [19] HERSANT F, GAUTIER D, LUNINE J I. Enrichment in volatiles in the giant planets of the Solar system [J]. Planetary and Space Science, 2004, 52(7): 623–641. doi: 10.1016/j.pss.2003.12.011 [20] MOUSIS O, LUNINE J I, PETIT J M, et al. Impact regimes and post-formation sequestration processes: implications for the origin of heavy noble gases in terrestrial planets [J]. The Astrophysical Journal, 2010, 714(2): 1418–1423. doi: 10.1088/0004-637X/714/2/1418 [21] KUBO H, SAKURAI S, ASAKURA N, et al. High radiation and high density experiments in JT-60U [J]. Nuclear Fusion, 2001, 41(2): 227. doi: 10.1088/0029-5515/41/2/310 [22] YOO C S, HOLMES N C, ROSS M, et al. Shock temperatures and melting of iron at Earth core conditions [J]. Physical Review Letters, 1993, 70(25): 3931–3934. doi: 10.1103/PhysRevLett.70.3931 [23] 谭华. 金属的冲击波温度测量(Ⅰ) ──高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003TAN H. Shock temperature measurements for metal (Ⅰ) ──calibration of pyrometers and data reduction for the temperature at the interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003 [24] 施鑫辉, 杨雷, 杨雪, 等. 冲击点火反应过程中RDX基PBX炸药的热辐射特性 [J]. 高压物理学报, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814SHI X H, YANG L, YANG X, et al. Thermal radiation characteristics of RDX-based PBX explosives during shock-induced ignition reactions [J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814 [25] KWIATKOWSKI C S, GUPTA Y M. Optical measurements to probe inelastic deformation in shocked brittle materials [J]. AIP Conference Proceedings, 2000, 505(1): 641–644. doi: 10.1063/1.1303555 [26] 王藩侯, 杨传路, 李西军, 等. 液氩多体作用势研究及其Hugoniot曲线的分子动力学模拟 [J]. 物理学报, 2000, 49(1): 114–118. doi: 10.3321/j.issn:1000-3290.2000.01.024WANG F H, YANG C L, LI X J, et al. Studies on many-body interactions and molecular dynamics simulations for the Hugoniot curves of liquid argon [J]. Acta Physica Sinica, 2000, 49(1): 114–118. doi: 10.3321/j.issn:1000-3290.2000.01.024 [27] SABEEH AKRAM M, FAN Z N, ZHANG M J, et al. Measuring the shock Hugoniot data of liquid nitrogen using a cryogenic system for shock compression [J]. Journal of Applied Physics, 2020, 128(22): 225901. doi: 10.1063/5.0029911 [28] BOSLOUGH M B. A model for time dependence in shock-induced thermal radiation of light [J]. Journal of Applied Physics, 1985, 58(9): 3394–3399. doi: 10.1063/1.335756 [29] BOEHLER R, ROSS M, BOERCKER D B. Melting of LiF and NaCl to 1 Mbar: systematics of ionic solids at extreme conditions [J]. Physical Review Letters, 1997, 78(24): 4589–4592. doi: 10.1103/PhysRevLett.78.4589 [30] MENG C M, SHI S C, DONG S, et al. Experimental measurement for shock velocity-mass velocity relationship of liquid argon up to 46 GPa [J]. Chinese Physics Letters, 2003, 20(8): 1221–1222. doi: 10.1088/0256-307X/20/8/310 [31] 孟川民, 施尚春, 黄海军, 等. 33 GPa压力以下液氩冲击温度的实验测量 [J]. 高压物理学报, 2006, 20(3): 296–300. doi: 10.11858/gywlxb.2006.03.013MENG C M, SHI S C, HUANG H J, et al. Experimental measurement for shock temperature of liquid argon up to 33 GPa [J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 296–300. doi: 10.11858/gywlxb.2006.03.013 [32] MCGIVERN W S, SORKHABI O, SUITS A, et al. Primary and secondary processes in the photodissociation of CHBr3 [J]. Journal of Physical Chemistry A, 2000, 104(45): 10085–10091. doi: 10.1021/jp0005017 [33] ZHOU X M, NELLIS W J, LI J B, et al. Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa [J]. Journal of Applied Physics, 2015, 118(5): 055903. doi: 10.1063/1.4928081 -

下载: