冲击加载下分子流体/窗口界面“冲击冷却”的物理机制

李柯苇 AKRAMMuhammad Sabeeh 杨雷 袁文硕 刘福生

李柯苇, AKRAMMuhammad Sabeeh, 杨雷, 袁文硕, 刘福生. 冲击加载下分子流体/窗口界面“冲击冷却”的物理机制[J]. 高压物理学报, 2026, 40(2): 020101. doi: 10.11858/gywlxb.20251092
引用本文: 李柯苇, AKRAMMuhammad Sabeeh, 杨雷, 袁文硕, 刘福生. 冲击加载下分子流体/窗口界面“冲击冷却”的物理机制[J]. 高压物理学报, 2026, 40(2): 020101. doi: 10.11858/gywlxb.20251092
LI Kewei, AKRAM Muhammad Sabeeh, YANG Lei, YUAN Wenshuo, LIU Fusheng. Physical Mechanisms of “Shock Cooling” at the Molecular Fluid/Window Interface under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2026, 40(2): 020101. doi: 10.11858/gywlxb.20251092
Citation: LI Kewei, AKRAM Muhammad Sabeeh, YANG Lei, YUAN Wenshuo, LIU Fusheng. Physical Mechanisms of “Shock Cooling” at the Molecular Fluid/Window Interface under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2026, 40(2): 020101. doi: 10.11858/gywlxb.20251092

冲击加载下分子流体/窗口界面“冲击冷却”的物理机制

doi: 10.11858/gywlxb.20251092
基金项目: 国家自然科学基金(12072299);冲击波物理与爆轰物理全国重点实验室基金(JCKYS2019212007)
详细信息
    作者简介:

    李柯苇(1999-),男,硕士研究生,主要从事冲击高压下的分子流体研究. E-mail:1943216554@qq.com

    通讯作者:

    刘福生(1966-),男,博士,教授,博士生导师,主要从事动高压凝聚态物理与原子分子物理研究. E-mail:fusheng_l@163.com

  • 中图分类号: O521.2

Physical Mechanisms of “Shock Cooling” at the Molecular Fluid/Window Interface under Shock Loading

  • 摘要: 分子流体/窗口“冲击冷却”的物理机制是困扰冲击波物理学界多年的科学问题。对冲击界面冷却效应的物理解释有3种不同观点:分子流体/窗口之间的热平衡、熔融态光学窗口的消光效应和分子流体的冲击响应特性。为此,对比研究了化学活性流体CHBr3及惰性液态氩(LAr)与LiF光学窗口界面的冲击辐射行为和辐射温度变化特征。在相同的冲击压强下,2种介质的界面辐射特性呈现出不同的演变特征,可以认为,界面冷却效应与流体介质及其化学活性密切相关。观测结果表明,界面冷却效应由流体自身冲击响应所致,与热传导机制和窗口熔化消光机制无关。

     

  • 图  冲击实验方案示意图

    Figure  1.  Schematic diagram of impact experiment

    图  实验1的光辐亮度(a)和温度(b)历史曲线

    Figure  2.  Radiance (a) and temperature (b) historical curves for experiment 1

    图  实验2的光辐亮度(a)和温度(b)历史曲线

    Figure  3.  Radiance (a) and temperature (b) historical curves for experiment 2

    图  实验1的灰体拟合曲线

    Figure  4.  Gray body fitting curves for experiment 1

    图  实验2的灰体拟合曲线

    Figure  5.  Gray body fitting curves for experiment 2

    图  实验3的光辐亮度(a)和温度(b)历史曲线

    Figure  6.  Radiance (a) and temperature (b) historical curves for experiment 3

    图  实验4的光辐亮度(a)和温度(b)历史曲线

    Figure  7.  Radiance (a) and temperature (b) historical curves for experiment 4

    图  LiF相图

    Figure  8.  Phase diagram of LiF

    表  1  实验参数

    Table  1.   Experimental parameters

    Experiment
    No.
    Flyer
    material
    Flyer velocity/
    (km·s–1)
    Substrate
    material
    Liquid
    material
    Liquid
    pressure/GPa
    Window
    material
    Window
    pressure/GPa
    1 Ta 2.92 Al LAr 26 LiF 38
    2 Cu 3.08 Al CHBr3 32 LiF 41
    3 Ta 3.87 Al LAr 41 LiF 69
    4 Cu 4.37 Cu CHBr3 55 LiF 68
    下载: 导出CSV

    表  2  冲击波在液体材料和窗口中的观测温度

    Table  2.   Observed temperature of liquid material and window under shock loading

    Experiment No. Liquid temperature/K Window temperature/K
    1 5 700±90 7 700±175
    2 3 600±80 3 150±150
    3 14 000±70 12 700±100
    4 6 350±70 5 300±80
    下载: 导出CSV
  • [1] ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [2] SIKKA S K. Behaviour of materials under shock loading conditions [J]. Bulletin of Materials Science, 1992, 15(1): 35–46. doi: 10.1007/BF02745215
    [3] 孙毅, 向士凯, 耿华运, 等. 自动校准的多相状态方程建模方法及其在锡中的应用 [J]. 高压物理学报, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709

    SUN Y, XIANG S K, GENG H Y, et al. Automated calibrated modeling method of multiphase equations of states: applied to tin [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709
    [4] 胡建波, 周显明, 谭华. 反向碰撞法测量Sn的高压卸载声速 [J]. 物理学报, 2008, 57(4): 2347–2351. doi: 10.3321/j.issn:1000-3290.2008.04.056

    HU J B, ZHOU X M, TAN H. Measurements of release sound velocities of tin with reverse-impact method [J]. Acta Physica Sinica, 2008, 57(4): 2347–2351. doi: 10.3321/j.issn:1000-3290.2008.04.056
    [5] ZOU X Y, HUANG H W, YAO X H. Flexoelectric energy dissipating mechanism for multi-impact protection [J]. Applied Mathematics and Mechanics, 2025, 46(4): 699–710. doi: 10.1007/s10483-025-3235-6
    [6] NELLIS W J, RADOUSKY H B, HAMILTON D C, et al. Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition [J]. The Journal of Chemical Physics, 1991, 94(3): 2244–2257. doi: 10.1063/1.459895
    [7] RADOUSKY H B, ROSS M. Shock-induced cooling in high-density fluid nitrogen [J]. High Pressure Research, 1988, 1(1): 39–52. doi: 10.1080/08957958808202479
    [8] RADOUSKY H B, NELLIS W J, ROSS M, et al. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures [J]. Physical Review Letters, 1986, 57(19): 2419–2422. doi: 10.1103/PhysRevLett.57.2419
    [9] LINDSEY R K, BASTEA S, LYU Y J, et al. Chemical evolution in nitrogen shocked beyond the molecular stability limit [J]. The Journal of Chemical Physics, 2023, 159(8): 084502. doi: 10.1063/5.0157238
    [10] CHEN Q F, ZHENG J, GU Y J, et al. Thermophysical properties of multi-shock compressed dense argon [J]. The Journal of Chemical Physics, 2014, 140(7): 074202. doi: 10.1063/1.4865129
    [11] ZHENG J, CHEN Q F, GU Y J, et al. Multishock compression properties of warm dense argon [J]. Scientific Reports, 2015, 5(1): 16041. doi: 10.1038/srep16041
    [12] ZHENG J, CHEN Q F, GU Y J, et al. Thermodynamics, compressibility, and phase diagram: shock compression of supercritical fluid xenon [J]. The Journal of Chemical Physics, 2014, 141(12): 124201. doi: 10.1063/1.4896071
    [13] LI J, ZHOU X M, LI J B. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures [J]. Review of Scientific Instruments, 2008, 79(12): 123107. doi: 10.1063/1.3046279
    [14] 周显明, 操秀霞, 李俊, 等. 氟化锂和蓝宝石单晶冲击消光及其对辐射测温的影响 [J]. 原子与分子物理学报, 2012, 29(3): 481–487. doi: 10.3969/j.issn.1000-0364.2012.03.018

    ZHOU X M, CAO X X, LI J, et al. Shock-induced optical extinction in LiF and sapphire crystals and its significance in the radiant temperature determination [J]. Journal of Atomic and Molecular Physics, 2012, 29(3): 481–487. doi: 10.3969/j.issn.1000-0364.2012.03.018
    [15] CAO X X, WU Q, SOKOL M, et al. Superior optical transparency of nano-grain magnesium aluminate spinel at high shock pressure [J]. Applied Physics Letters, 2024, 124(5): 054102. doi: 10.1063/5.0181667
    [16] 胡金彪, 谭华, 经福谦. 溴仿在冲击压缩下的光辐射及化学反应 [J]. 高压物理学报, 1996, 10(3): 220–226. doi: 10.11858/gywlxb.1996.03.009

    HU J B, TAN H, JING F Q. Optic radiations and chemical reactions in bromoform under shock compressions [J]. Chinese Journal of High Pressure Physics, 1996, 10(3): 220–226. doi: 10.11858/gywlxb.1996.03.009
    [17] DE GIACOMO A, HERMANN J. Laser-induced plasma emission: from atomic to molecular spectra [J]. Journal of Physics D: Applied Physics, 2017, 50(18): 183002. doi: 10.1088/1361-6463/aa6585
    [18] ATREYA S K, MAHAFFY P R, NIEMANN H B, et al. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets [J]. Planetary and Space Science, 2003, 51(2): 105–112. doi: 10.1016/S0032-0633(02)00144-7
    [19] HERSANT F, GAUTIER D, LUNINE J I. Enrichment in volatiles in the giant planets of the Solar system [J]. Planetary and Space Science, 2004, 52(7): 623–641. doi: 10.1016/j.pss.2003.12.011
    [20] MOUSIS O, LUNINE J I, PETIT J M, et al. Impact regimes and post-formation sequestration processes: implications for the origin of heavy noble gases in terrestrial planets [J]. The Astrophysical Journal, 2010, 714(2): 1418–1423. doi: 10.1088/0004-637X/714/2/1418
    [21] KUBO H, SAKURAI S, ASAKURA N, et al. High radiation and high density experiments in JT-60U [J]. Nuclear Fusion, 2001, 41(2): 227. doi: 10.1088/0029-5515/41/2/310
    [22] YOO C S, HOLMES N C, ROSS M, et al. Shock temperatures and melting of iron at Earth core conditions [J]. Physical Review Letters, 1993, 70(25): 3931–3934. doi: 10.1103/PhysRevLett.70.3931
    [23] 谭华. 金属的冲击波温度测量(Ⅰ) ──高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003

    TAN H. Shock temperature measurements for metal (Ⅰ) ──calibration of pyrometers and data reduction for the temperature at the interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003
    [24] 施鑫辉, 杨雷, 杨雪, 等. 冲击点火反应过程中RDX基PBX炸药的热辐射特性 [J]. 高压物理学报, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814

    SHI X H, YANG L, YANG X, et al. Thermal radiation characteristics of RDX-based PBX explosives during shock-induced ignition reactions [J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814
    [25] KWIATKOWSKI C S, GUPTA Y M. Optical measurements to probe inelastic deformation in shocked brittle materials [J]. AIP Conference Proceedings, 2000, 505(1): 641–644. doi: 10.1063/1.1303555
    [26] 王藩侯, 杨传路, 李西军, 等. 液氩多体作用势研究及其Hugoniot曲线的分子动力学模拟 [J]. 物理学报, 2000, 49(1): 114–118. doi: 10.3321/j.issn:1000-3290.2000.01.024

    WANG F H, YANG C L, LI X J, et al. Studies on many-body interactions and molecular dynamics simulations for the Hugoniot curves of liquid argon [J]. Acta Physica Sinica, 2000, 49(1): 114–118. doi: 10.3321/j.issn:1000-3290.2000.01.024
    [27] SABEEH AKRAM M, FAN Z N, ZHANG M J, et al. Measuring the shock Hugoniot data of liquid nitrogen using a cryogenic system for shock compression [J]. Journal of Applied Physics, 2020, 128(22): 225901. doi: 10.1063/5.0029911
    [28] BOSLOUGH M B. A model for time dependence in shock-induced thermal radiation of light [J]. Journal of Applied Physics, 1985, 58(9): 3394–3399. doi: 10.1063/1.335756
    [29] BOEHLER R, ROSS M, BOERCKER D B. Melting of LiF and NaCl to 1 Mbar: systematics of ionic solids at extreme conditions [J]. Physical Review Letters, 1997, 78(24): 4589–4592. doi: 10.1103/PhysRevLett.78.4589
    [30] MENG C M, SHI S C, DONG S, et al. Experimental measurement for shock velocity-mass velocity relationship of liquid argon up to 46 GPa [J]. Chinese Physics Letters, 2003, 20(8): 1221–1222. doi: 10.1088/0256-307X/20/8/310
    [31] 孟川民, 施尚春, 黄海军, 等. 33 GPa压力以下液氩冲击温度的实验测量 [J]. 高压物理学报, 2006, 20(3): 296–300. doi: 10.11858/gywlxb.2006.03.013

    MENG C M, SHI S C, HUANG H J, et al. Experimental measurement for shock temperature of liquid argon up to 33 GPa [J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 296–300. doi: 10.11858/gywlxb.2006.03.013
    [32] MCGIVERN W S, SORKHABI O, SUITS A, et al. Primary and secondary processes in the photodissociation of CHBr3 [J]. Journal of Physical Chemistry A, 2000, 104(45): 10085–10091. doi: 10.1021/jp0005017
    [33] ZHOU X M, NELLIS W J, LI J B, et al. Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa [J]. Journal of Applied Physics, 2015, 118(5): 055903. doi: 10.1063/1.4928081
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  97
  • PDF下载量:  26
出版历程
  • 收稿日期:  2025-05-18
  • 修回日期:  2025-07-07
  • 网络出版日期:  2025-07-15
  • 刊出日期:  2026-02-05

目录

    /

    返回文章
    返回