海底光电复合电缆冲击响应试验及仿真研究

罗龙琦 李科斌 赵远涛 周风华 郑宇轩

罗龙琦, 李科斌, 赵远涛, 周风华, 郑宇轩. 海底光电复合电缆冲击响应试验及仿真研究[J]. 高压物理学报, 2026, 40(2): 025304. doi: 10.11858/gywlxb.20251083
引用本文: 罗龙琦, 李科斌, 赵远涛, 周风华, 郑宇轩. 海底光电复合电缆冲击响应试验及仿真研究[J]. 高压物理学报, 2026, 40(2): 025304. doi: 10.11858/gywlxb.20251083
LUO Longqi, LI Kebin, ZHAO Yuantao, ZHOU Fenghua, ZHENG Yuxuan. Test and Simulation Study on Impact Response of Submarine Optoelectronic Composite Cables[J]. Chinese Journal of High Pressure Physics, 2026, 40(2): 025304. doi: 10.11858/gywlxb.20251083
Citation: LUO Longqi, LI Kebin, ZHAO Yuantao, ZHOU Fenghua, ZHENG Yuxuan. Test and Simulation Study on Impact Response of Submarine Optoelectronic Composite Cables[J]. Chinese Journal of High Pressure Physics, 2026, 40(2): 025304. doi: 10.11858/gywlxb.20251083

海底光电复合电缆冲击响应试验及仿真研究

doi: 10.11858/gywlxb.20251083
基金项目: 宁波市重点研发计划(2023Z050)
详细信息
    作者简介:

    罗龙琦(2001-),男,硕士研究生,主要从事冲击动力学研究. E-mail:2211090022@nbu.edu.cn

    通讯作者:

    李科斌(1988-),男,博士,讲师,主要从事冲击动力学和生物力学研究. E-mail:likebin@nbu.edu.cn

  • 中图分类号: O347; O521.9

Test and Simulation Study on Impact Response of Submarine Optoelectronic Composite Cables

  • 摘要: 为探讨海底光电复合电缆(submarine optical-electrical composite cable,SOCC)在不同工况下的抗冲击力学性能,对SOCC开展落锤冲击试验,揭示不同变量下其外铠装的结构变形特征,记录冲击演化过程和最大凹陷变形程度;然后,对SOCC开展有限元模拟,并与试验结果进行对比分析;最后,探讨了SOCC在不同参数影响下的变形特征。结果表明:内外铠装均发生了凹陷变形,铜铠装、铜导体和光缆铠装主要表现为弯曲变形,同时耦合局部凹陷变形;随着冲击能量的增大,金属构件达到最大变形所需时间缩短、回弹加快;冲击角度对内外铠装凹陷变形的影响不明显,对内部其他构件产生了显著破坏,其中上方构件的变形破坏最为严重。研究结果有利于对SOCC的动力学性能评估,并为工程中SOCC保护措施设计提供参考。

     

  • 图  试验试样

    Figure  1.  Test specimen

    图  试验装置

    Figure  2.  Test setup

    图  冲击角度

    Figure  3.  Impact angle

    图  锤头冲击试验实物

    Figure  4.  Physical diagram of the hammer head impact test

    图  SOCC的整体凹陷变形

    Figure  5.  Overall depression deformation of SOCC

    图  落锤冲击历程

    Figure  6.  Impact history plot of the falling hammer

    图  各组试验结果

    Figure  7.  Test results of each group

    图  模型截面示意图

    Figure  8.  Diagram schematic of model section

    图  落锤示意图

    Figure  9.  Diagram schematic of hammer head

    图  10  FEM模型

    Figure  10.  FEM model

    图  11  网格划分

    Figure  11.  Mesh generation

    图  12  A组条件下最大冲击力和装甲压痕的试验与数值模拟对比

    Figure  12.  Comparison of the maximum impact force and armor indentation of tests and FEM under group A

    图  13  变形形式

    Figure  13.  Deformation mode

    图  14  冲击力-时间历史曲线

    Figure  14.  Impact force-time history curves

    图  15  冲击力与外铠装的变形关系

    Figure  15.  Relationships between impact force and deformation of outer armor

    图  16  不同冲击高度下铠装凹陷变形历程曲线

    Figure  16.  Deformation curves of the armor indentation at different heights

    图  17  不同高度下内部构件弯曲曲线

    Figure  17.  Bending curves of internal components at different heights

    图  18  不同高度下铠装截面的变形比率

    Figure  18.  Armor cross-section deformation ratio at different heights

    图  19  不同冲击角度下的数值模型

    Figure  19.  Numerical models under different impact angles

    图  20  冲击力-时间历程曲线

    Figure  20.  Curves of impact force-time history

    图  21  冲击力与外铠装变形的关系

    Figure  21.  Relationships between impact force and outer armor deformation

    图  22  不同冲击角度下铠装凹陷变形历程曲线

    Figure  22.  Curves of armor indentation time history at different impact angles

    图  23  不同冲击角度下内部构件弯曲曲线

    Figure  23.  Bending deformation curves of internal components at different impact angles

    图  24  最大变形云图

    Figure  24.  Maximum deformation contour plots

    图  25  最终变形云图

    Figure  25.  Final deformation contour plots

    图  26  不同冲击角度下铠装截面变形比率

    Figure  26.  Armor cross-section deformation ratio at different impact angles

    表  1  SOCC尺寸参数

    Table  1.   Dimension parameters of SOCC

    Position Component type Raw materials Quantity hn/mm

    douter/mm
    θ/(°)

    Optical cable Optical fiber
    Inner sheath Polyethylene 1.0 5.8
    Armor Steel 2.0 9.8 10
    External sheath Polyethylene 2.5 14.8
    Power cable Copper conductors Copper 3 11.4
    Water-blocking tape Semiconductor water-blocking tape 0.3 11.4
    Conductor shielding Semiconductor compounds 0.8 13.0
    XLPE insulation layer Crosslinked polyethylene 10.5 34.0
    Insulated shielding Semiconductor compounds 1.0 36.0
    Water-blocking tape Semiconductor water-blocking tape 0.3 36.9
    Copper armor Copper 52 1.1 39.2 10
    Copper belt Copper 0.1 39.5
    Water-blocking tape Semiconductor water-blocking tape 0.3 40.4
    Cableouter sheath Polyethylene 2.5 45.4
    Inner layer Filler Polyethylene 97.9
    Inner cover tape Nylon tape 0.3 98.8
    Inner sheath Polyethylene 3.0 104.8
    Double-layer armor Armor Steel 77/84 4.0 112.8/121.7 10
    Adhesive tape Nylon tape 0.3 113.7/122.6
    External sheath Polyethylene 5.0 132.6
    下载: 导出CSV

    表  2  重物尺寸

    Table  2.   Dimensions of weight

    No. Photo Shape Mass/kg Dimension/(mm×mm) Material Hardness/MPa
    1 Cylinder 6.7 $ \mathrm{\varnothing } $100×150 Cr12MoV 4.71
    2 Semi-sphere 6.0 $ \mathrm{\varnothing } $100×150 Cr12MoV 4.71
    下载: 导出CSV

    表  3  试验分组情况

    Table  3.   Test grouping situation

    GroupWeight shapeImpact angle/(°)Mass/kgh/m
    ASemi-sphere03000.5
    1.0
    1.5
    BSemi-sphere453000.5
    1.0
    1.5
    CCylinder03000.5
    1.0
    1.5
    DSemi-sphere0503.0
    1003.0
    1503.0
    下载: 导出CSV

    表  4  试验结果

    Table  4.   Test results

    Group Weight shape Impact angle/(°) Mass/kg h/m Maximum deformation of
    the outer armor/mm
    Peak force of
    impact/kN
    A Semi-sphere 0 300 0.5 21.42 89.2
    1.0 31.79 126.1
    1.5 41.63 140.4
    B Semi-sphere 45 300 0.5 20.03 92.7
    1.0 28.67 128.3
    1.5 37.21 159.8
    C Cylinder 0 300 0.5 13.87 123.6
    1.0 22.02 161.1
    1.5 30.09 191.7
    D Semi-sphere 0 50 3.0 19.21 92.8
    100 3.0 29.99 124.5
    150 3.0 38.33 145.8
    下载: 导出CSV

    表  5  材料参数[21]

    Table  5.   Material parameters[21]

    Material Density/(kg·m−3) Elastic modulus/GPa Poisson’s ratio Yield strength/MPa
    XLPE 930 0.3 0.30 20
    PE 958 0.883 0.46 20
    Cu 8960 108 0.33 305
    Steel 7960 210 0.30 340
    下载: 导出CSV

    表  6  冲击能量参数

    Table  6.   Impact energy parameters

    Falling height/mMass/kgVelocity/(m·s–1)Impact energy/kJ
    0.253002.2130.735
    0.503003.1301.470
    0.753003.8302.205
    1.003004.4272.940
    1.253004.9493.675
    1.503005.4224.410
    1.753005.8565.145
    下载: 导出CSV
  • [1] 阎军, 胡海涛, 苏琦, 等. 海洋电缆中关键力学问题的研究进展与展望 [J]. 力学学报, 2022, 54(4): 846–861. doi: 10.6052/0459-1879-22-113

    YAN J, HU H T, SU Q, et al. Prospect and progression of key mechanical problems in marine cables [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846–861. doi: 10.6052/0459-1879-22-113
    [2] 王少华, 阎黎冰, 李特, 等. 交流500 kV交联聚乙烯绝缘海缆设计关键问题 [J]. 高压电器, 2018, 54(8): 225–230, 236. doi: 10.13296/j.1001-1609.hva.2018.08.035

    WANG S H, YAN L B, LI T, et al. Key problems of design for AC 500 kV cross-linked polyethylene insulation submarine cable [J]. High Voltage Apparatus, 2018, 54(8): 225–230, 236. doi: 10.13296/j.1001-1609.hva.2018.08.035
    [3] PENG L J, XU S Y, HE M C. Numerical simulation study on through-anchor cable reinforcement control of inter-roadway coal pillars in double-roadway layouts [J]. Sustainability, 2025, 17(6): 2416. doi: 10.3390/su17062416
    [4] SUN X M, WANG L, CUI L, et al. Numerical study on mechanical properties and energy conversion characteristics of soft rock anchored by CRLD anchor cables containing random cracks [J]. International Journal of Geomechanics, 2025, 25(6): 04025079. doi: 10.1061/IJGNAI.GMENG-10281
    [5] TAORMINA B, BALD J, WANT A, et al. A review of potential impacts of submarine power cables on the marine environment: knowledge gaps, recommendations and future directions [J]. Renewable and Sustainable Energy Reviews, 2018, 96: 380–391. doi: 10.1016/j.rser.2018.07.026
    [6] 李晓骏, 张维佳, 左干清, 等. 深水区大截面海底电缆打捞受力分析 [J]. 应用科技, 2022, 49(6): 86–91. doi: 10.11991/yykj.202208017

    LI X J, ZHANG W J, ZUO G Q, et al. Analysis of lifting up force of large section submarine cable in deep water [J]. Applied Science and Technology, 2022, 49(6): 86–91. doi: 10.11991/yykj.202208017
    [7] CHANG H C, CHEN B F. Mechanical behavior of submarine cable under coupled tension, torsion and compressive loads [J]. Ocean Engineering, 2019, 189: 106272. doi: 10.1016/j.oceaneng.2019.106272
    [8] 祝茂宇, 于治雨, 肖龙, 等. 不同填充形式对动态海底电缆力学性能的影响 [J]. 海洋工程装备与技术, 2022, 9(4): 10–17. doi: 10.12087/oeet.2095-7297.2022.04.02

    ZHU M Y, YU Z Y, XIAO L, et al. Influence of different filling forms on mechanical properties of dynamic submarine cables [J]. Ocean Engineering Equipment and Technology, 2022, 9(4): 10–17. doi: 10.12087/oeet.2095-7297.2022.04.02
    [9] VASILESCU V F, DINU D. Installation of submarine cables in the offshore wind industry and their impact on the marine environment [J]. Journal of Marine Technology and Environment, 2021, 1: 43–51. doi: 10.53464/JMTE.01.2021.07
    [10] LIU Z, IGLAND R, BRUASETH S. Local and global assessments of a subsea riser-spool connection under dropped impact loads [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1201: 012049. doi: 10.1088/1757-899X/1201/1/012049
    [11] HOU F H, CHEN Y F, YAN Y F, et al. Structural response and damage assessment method for subsea pipe-in-pipe subjected to anchor impact [J]. Marine Structures, 2025, 99: 103714. doi: 10.1016/j.marstruc.2024.103714
    [12] TIAN Y H, CHAI W S, EL BORGI S, et al. Assessment of submarine pipeline damages subjected to falling object impact considering the effect of seabed [J]. Marine Structures, 2021, 78: 102963. doi: 10.1016/j.marstruc.2021.102963
    [13] ZHAO E J, NIE C H, HE L, et al. Numerical study on dynamic responses of submarine pipeline and porous seabed under internal solitary waves [J]. Ocean Engineering, 2025, 320: 120285. doi: 10.1016/j.oceaneng.2024.120285
    [14] MAO Y D, YANG Z X, WANG G, et al. A study on the mechanical behavior of umbilical cables under impact loads using experimental and numerical methods [J]. Marine Structures, 2025, 99: 103700. doi: 10.1016/j.marstruc.2024.103700
    [15] OSTHOFF D, HEINS E, GRABE J. Impact on submarine cables due to ship anchor-soil interaction [J]. Geotechnik, 2017, 40(4): 265–270. doi: 10.1002/gete.201600027
    [16] GAO Q, DUAN M L, LIU X X, et al. Damage assessment for submarine photoelectric composite cable under anchor impact [J]. Applied Ocean Research, 2018, 73: 42–58. doi: 10.1016/j.apor.2018.01.006
    [17] ZHANG T, LI L T, DU A Q, et al. Research on anchor damage and protection of three-core composite submarine cable considering impact angle [J]. Ocean Engineering, 2022, 265: 112668. doi: 10.1016/j.oceaneng.2022.112668
    [18] WANG F W, DAI Z L, NAKAHARA Y, et al. Experimental study on impact behavior of submarine landslides on undersea communication cables [J]. Ocean Engineering, 2018, 148: 530–537. doi: 10.1016/j.oceaneng.2017.11.050
    [19] ZHOU H, YAN X, HU D A, et al. A hamiltonian global nodal position finite element method for dynamics analysis of submarine cables [J]. Ocean Engineering, 2022, 266: 112992. doi: 10.1016/j.oceaneng.2022.112992
    [20] 国家技术监督局. 海军锚: GB/T 545—1996 [S]. 北京: 中国标准出版社, 1996.

    State Bureau of Technical Supervision. Admiralty anchor: GB/T 545—1996[S]. Beijing: Standards Press of China, 1996.
    [21] OPGÅRD M F. Torsion instability of dynamic cables during installation [D]. Trondheim: Norwegian University of Science and Technology, 2017.
    [22] TRAVANCA J, HAO H. Numerical analysis of steel tubular member response to ship bow impacts [J]. International Journal of Impact Engineering, 2014, 64: 101–121. doi: 10.1016/j.ijimpeng.2013.10.007
    [23] YAMADA H, SHIMIZU Y, OGASAWARA N, et al. Effect of strain rate on load-displacement relations by instrumented sharp indentation [J]. Journal of the Japanese Society for Experimental Mechanics, 2012, 12(2): 88–93. doi: 10.11395/jjsem.12.88
    [24] WASKITO R, ARTANA K B, PRATIWI E. Risk assessment of Subsea pipeline using standard DNVGL-RP-F107 [J]. IOP Conference Series: Earth and Environmental Science, 2020, 557: 012069. doi: 10.1088/1755-1315/557/1/012069
  • 加载中
图(26) / 表(6)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  135
  • PDF下载量:  25
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-06-05
  • 网络出版日期:  2025-06-11
  • 刊出日期:  2026-02-05

目录

    /

    返回文章
    返回