双波长全光纤激光干涉速度复测技术

王为 刘盛刚 谷伟 陶天炯 马鹤立 王翔 翁继东

王为, 刘盛刚, 谷伟, 陶天炯, 马鹤立, 王翔, 翁继东. 双波长全光纤激光干涉速度复测技术[J]. 高压物理学报, 2026, 40(3): 033401. doi: 10.11858/gywlxb.20251081
引用本文: 王为, 刘盛刚, 谷伟, 陶天炯, 马鹤立, 王翔, 翁继东. 双波长全光纤激光干涉速度复测技术[J]. 高压物理学报, 2026, 40(3): 033401. doi: 10.11858/gywlxb.20251081
WANG Wei, LIU Shenggang, GU Wei, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong. Dual Wavelength All-Fiber Laser Interferometric Velocity Retest Technique[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 033401. doi: 10.11858/gywlxb.20251081
Citation: WANG Wei, LIU Shenggang, GU Wei, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong. Dual Wavelength All-Fiber Laser Interferometric Velocity Retest Technique[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 033401. doi: 10.11858/gywlxb.20251081

双波长全光纤激光干涉速度复测技术

doi: 10.11858/gywlxb.20251081
基金项目: 冲击波物理与爆轰物理全国重点实验室基金(LSD-KB1803)
详细信息
    作者简介:

    王 为(1973-),女,本科,工程师,主要从事瞬态光学诊断技术研究. E-mail:ww2492429@126.com

    通讯作者:

    马鹤立(1986-),男,硕士,副研究员,主要从事瞬态光学诊断技术研究. E-mail:marcos12@126.com

  • 中图分类号: O521.3; O436.1

Dual Wavelength All-Fiber Laser Interferometric Velocity Retest Technique

  • 摘要: 针对冲击爆轰实验中对速度测量系统的高可靠性要求,基于光纤波分复用/解复用技术,提出了一种双波长全光纤激光干涉速度复测方法及技术。设计并搭建了一套速度复测原理验证系统,采用1530.31550.0 nm 2个波长,在气体炮上开展了低速、高速2种典型状态下的动态验证实验。实验结果显示,利用单一光纤探头实现了样品自由面运动速度的复测,2个波长系统得到的速度测量结果具有较好的一致性,速度相对偏差在±1.5%以内。

     

  • 图  典型全光纤激光干涉测速光路示意图

    Figure  1.  Schematic diagram of typical all-fiber laser interferometric velocimetry

    图  波分复用器示意图

    Figure  2.  Schematic diagrams of wavelength division multiplexer

    图  双波长激光干涉测速光路结构示意图

    Figure  3.  Schematic diagram of optical path of dual-wavelength laser interferometric velocimetry

    图  实验装置结构示意图(a)和实物照片(b)

    Figure  4.  Schematic diagram (a) and photograph (b) of the experimental setup

    图  $\varnothing $14 mm气炮上获得的干涉信号

    Figure  5.  Interference signals obtained by the $\varnothing $14 mm gas gun

    图  $\varnothing $14 mm气炮上样品的速度复测结果

    Figure  6.  Results of sample velocity measured by the WDM technique by the $\varnothing $14 mm gas gun

    图  $\varnothing $28 mm二级轻气炮上获得的干涉信号

    Figure  7.  Interference signals obtained on the $\varnothing $28 mm two-stage light gas gun

    图  $\varnothing $28 mm二级轻气炮上获得的样品速度复测结果

    Figure  8.  Results of sample velocity measured by the WDM technique on the $\varnothing $28 mm two-stage light gas gun

  • [1] BARKER L M, HOLLENBACH R E. Laser interferometer for measuring high velocities of any reflecting surface [J]. Journal of Applied Physics, 1972, 43(11): 4669–4675. doi: 10.1063/1.1660986
    [2] MCMILLAN C F, GOOSMAN D R, PARKER N L, et al. Velocimetry of fast surfaces using Fabry-Perot interferometry [J]. Review of Scientific Instruments, 1988, 59(1): 1–21. doi: 10.1063/1.1140014
    [3] WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. doi: 10.1063/1.2335948
    [4] WENG J D, WANG X, MA Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser [J]. Review of Scientific Instruments, 2008, 79(11): 113101. doi: 10.1063/1.3020700
    [5] JIANG C Q, LI Y, LIU Q C, et al. A 532 nm fiber-optic displacement interferometer for low-velocity impact experiments [J]. Review of Scientific Instruments, 2018, 89(2): 023101. doi: 10.1063/1.4989767
    [6] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques [J]. Review of Scientific Instruments, 2006, 77(8): 083108. doi: 10.1063/1.2336749
    [7] DOLAN D H. Extreme measurements with photonic Doppler velocimetry (PDV) [J]. Review of Scientific Instruments, 2020, 91(5): 051501. doi: 10.1063/5.0004363
    [8] BARBARIN Y, LE BLANC G, D’ALMEIDA T, et al. Multi-wavelength crosstalk-free photonic Doppler velocimetry [J]. Review of Scientific Instruments, 2020, 91(12): 123105. doi: 10.1063/5.0027331
    [9] DANIELSON J R, DAYKIN E P, DIAZ A B, et al. Measurement of an explosively driven hemispherical shell using 96 points of optical velocimetry [J]. Journal of Physics: Conference Series, 2014, 500(14): 142008. doi: 10.1088/1742-6596/500/14/142008
    [10] 戴诚达, 谭华, 王道德, 等. 几种主要陨石类型的Hugoniot参数 [J]. 空间科学学报, 1999, 19(4): 368–374. doi: 10.11728/cjss1999.04.368

    DAI C D, TAN H, WANG D D, et al. Hugoniot parameters of several main types of meteorites [J]. Chinese Journal of Space Science, 1999, 19(4): 368–374. doi: 10.11728/cjss1999.04.368
    [11] LI Z G, WANG X, HOU Y, et al. Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(21): e2300066120. doi: 10.1073/pnas.2300066120
    [12] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [J]. 高能量密度物理, 2017, 4: 115–122.
    [13] 罗斌强, 张旭平, 郝龙, 等. 7 km/s以上超高速发射技术研究进展 [J]. 爆炸与冲击, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307

    LUO B Q, ZHANG X P, HAO L, et al. Advances on the techniques of ultrahigh-velocity launch above 7 km/s [J]. Explosion and Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307
    [14] JEANLOZ R, CELLIERS P M, COLLINS G W, et al. Achieving high-density states through shock-wave loading of precompressed samples [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9172–9177. doi: 10.1073/pnas.0608170104
    [15] LEMKE R W, KNUDSON M D, DAVIS J P, et al. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. doi: 10.1016/j.ijimpeng.2010.10.019
    [16] KRAUTER K G, JACOBSON G F, PATTERSON J R, et al. Single-mode fiber, velocity interferometry [J]. Review of Scientific Instruments, 2011, 82(4): 0451105. doi: 10.1063/1.3574797
    [17] PAVLENKO A V, MOKRUSHIN S S, TYAKTEV A A, et al. A hybrid interferometric system for velocity measurements in shock-wave experiments [J]. Review of Scientific Instruments, 2021, 92(1): 015104. doi: 10.1063/5.0029815
    [18] 李建中, 刘寿先, 刘俊雷, 等. 基于单探头实现两种技术同步复测的新测速仪 [J]. 中国激光, 2015, 42(10): 1005007. doi: 10.3788/CJL201542.1005007

    LI J Z, LIU S X, LIU J L, et al. Novel velocimetry of two techniques synchronous measurement based on single probe [J]. Chinese Journal of Lasers, 2015, 42(10): 1005007. doi: 10.3788/CJL201542.1005007
    [19] 宋立军, 黄超, 李世忱. 波分复用全光通信光纤网 [J]. 光通信研究, 1998(4): 16–20. doi: 10.13756/j.gtxyj.1998.04.005

    SONG L J, HUANG C, LI S C. Wavelength division multiplexed all optical fiber networks [J]. Study on Optical Communications, 1998(4): 16–20. doi: 10.13756/j.gtxyj.1998.04.005
    [20] 甘朝钦, 谢斌, 孙小菡, 等. 波分复用技术及其在通信中的应用 [J]. 光通信技术, 2000, 24(4): 304–310. doi: 10.3969/j.issn.1002-5561.2000.04.012

    GAN C Q, XIE B, SUN X H, et al. Applications of WDM technology in communications [J]. Optical Communication Technology, 2000, 24(4): 304–310. doi: 10.3969/j.issn.1002-5561.2000.04.012
  • 加载中
图(8)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  110
  • PDF下载量:  7
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-09-17
  • 网络出版日期:  2025-09-18
  • 刊出日期:  2026-02-05

目录

    /

    返回文章
    返回