爆炸载荷下剪切增稠胶填充蜂窝夹芯板的动态响应实验研究

纵侨 易昶成 李子豪 李世强

纵侨, 易昶成, 李子豪, 李世强. 爆炸载荷下剪切增稠胶填充蜂窝夹芯板的动态响应实验研究[J]. 高压物理学报, 2025, 39(9): 094101. doi: 10.11858/gywlxb.20251069
引用本文: 纵侨, 易昶成, 李子豪, 李世强. 爆炸载荷下剪切增稠胶填充蜂窝夹芯板的动态响应实验研究[J]. 高压物理学报, 2025, 39(9): 094101. doi: 10.11858/gywlxb.20251069
ZONG Qiao, YI Changcheng, LI Zihao, LI Shiqiang. Dynamic Response of Shear Thickening Gel-Filled Honeycomb Sandwich Panels under Blast Loading: Experimental Research[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094101. doi: 10.11858/gywlxb.20251069
Citation: ZONG Qiao, YI Changcheng, LI Zihao, LI Shiqiang. Dynamic Response of Shear Thickening Gel-Filled Honeycomb Sandwich Panels under Blast Loading: Experimental Research[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094101. doi: 10.11858/gywlxb.20251069

爆炸载荷下剪切增稠胶填充蜂窝夹芯板的动态响应实验研究

doi: 10.11858/gywlxb.20251069
基金项目: 国家自然科学基金(12472388)
详细信息
    作者简介:

    纵 侨(1998-),男,硕士研究生,主要从事结构冲击动力学研究. E-mail:jojoeber@163.com

    通讯作者:

    李世强(1986-),男,博士,教授,主要从事结构冲击动力学研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O347.1; O521.9

Dynamic Response of Shear Thickening Gel-Filled Honeycomb Sandwich Panels under Blast Loading: Experimental Research

  • 摘要: 将2种不同配比的剪切增稠胶(shear thickening gel,STG)SG和TG分别填充到铝合金蜂窝芯层中,设计并制备了一种具有优良抗爆性能的夹芯板结构。通过一系列实验,研究了其在爆炸载荷下的动态响应,采用数字图像相关(digital image correlation,DIC)技术记录并分析了夹芯板结构的实验过程,探究了STG填充材料与蜂窝芯层的耦合作用机制对夹芯结构动力学行为的影响规律。此外,通过分析不同夹芯结构前后面板及芯层的变形模态、应变历程和失效模式,得出了不同蜂窝边长及STG类型对夹芯板结构的抗爆炸冲击性能的影响。实验发现:未填充STG的蜂窝夹芯板的前后面板均出现了明显的破坏,防护性能较弱;填充STG能够有效地增强结构的抗爆炸冲击性能,而具有更高剪切增稠效应的TG填充夹芯板相较于SG填充夹芯板拥有更好的防护效果。当蜂窝边长为4 mm时,SG填充夹芯板的前面板发生破裂,而TG填充夹芯板的前面板则发生较均匀的塑性凹陷,且背面板挠度降低了61.0%;当蜂窝边长为8 mm时,相较于SG填充夹芯板,TG填充夹芯板的前面板和背面板挠度分别降低了5.6%和17.7%。实验结果表明,通过改变填充胶类型和蜂窝结构参数可以调控结构的抗爆性能。

     

  • 图  STG填充蜂窝夹芯板的装配流程

    Figure  1.  STG filled honeycomb sandwich panel assembly flow chart

    图  实验现场

    Figure  2.  Experimental site

    图  靶板示意图

    Figure  3.  Schematic diagram of target plate

    图  SG和TG样品的频率扫描测试结果

    Figure  4.  Frequency scan test results for SG and TG samples

    图  TG4的位移场历程

    Figure  5.  Displacement field history of TG4

    图  TG4的应变场历程

    Figure  6.  Strain field history of TG4

    图  E4的变形情况

    Figure  7.  Deformation of E4

    图  前面板变形

    Figure  8.  Deformation of the front panel

    图  试件剖面

    Figure  9.  Cross-section of specimens

    图  10  不同冲击能量下蜂窝板的变形特征

    Figure  10.  Deformation characteristics of honeycomb panels under different impact energies

    图  11  不同应变率下STG的变形特征

    Figure  11.  Deformation characteristics of STG under different strain rates

    图  12  位移时程曲线

    Figure  12.  Displacement-time curves

    图  13  背面板扫描云图

    Figure  13.  Scanning cloud images of the back panel

    表  1  材料参数[2021]

    Table  1.   Material parameters[2021]

    Materialρ/(kg·m−3)E/GPaμσY/MPaEt/GPa
    201 stainless steel77401840.3127585.75
    Al6061-T6 aluminum alloy2700690.3327526.69
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental conditions

    SpecimenHoneycomb side length/mmSTG typeTotal mass/g
    E44Empty1318.6
    SG44SG2759.7
    SG88SG2758.5
    TG44TG2786.8
    TG88TG2781.4
    下载: 导出CSV

    表  3  8701高能炸药材料参数[22]

    Table  3.   Material parameters of 8701 high explosives[22]

    ρ/(kg·m−3) $ D $/(m·s−1) $ {p}_{\mathrm{C}\mathrm{J}} $/GPa $ {A}_{1} $/GPa $ {B}_{1} $/GPa $ {R}_{1} $ $ {R}_{2} $ $ \omega $ $ {E}_{\rm a} $/GPa
    1700 8315 28.6 524.23 7.678 4.2 1.1 0.34 8.499
    下载: 导出CSV

    表  4  剪切频率测试中STG样品的$ G'_{\mathrm{m}\mathrm{a}\mathrm{x}} $、$ G'_{\mathrm{m}\mathrm{i}\mathrm{n}} $和相对剪切增稠效应

    Table  4.   $ G'_{\mathrm{m}\mathrm{a}\mathrm{x}} $, $ G'_{\mathrm{m}\mathrm{i}\mathrm{n}} $ and relative shear thickening effect of STG samples in shear frequency tests

    Specimen $ G'_{\mathrm{m}\mathrm{a}\mathrm{x}} $/kPa $ G'_{\mathrm{m}\mathrm{i}\mathrm{n}} $/kPa $ \theta $/%
    SG 159.710 5.4672 2821.2
    TG 120.640 3.7694 3100.5
    下载: 导出CSV

    表  5  前面板变形

    Table  5.   Deformation of the front panel

    Specimen Diameter/mm Deflection/mm
    SG4 75 Punch failure
    SG8 72 9.0
    TG4 78 12.0
    TG8 69 8.5
    下载: 导出CSV

    表  6  DIC和3D扫描仪测量的背面板残余挠度

    Table  6.   Residual deflection of the back panel measured by DIC and 3D scanner

    SpecimenResidual deflection/mm
    DIC3D scanner
    SG433.635.1
    SG820.220.9
    TG412.413.7
    TG815.717.2
    下载: 导出CSV
  • [1] GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. doi: 10.1016/j.tws.2023.111541
    [2] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. doi: 10.1016/j.tws.2018.01.014
    [3] LIU S T, ZHANG Y C, LIU P. New analytical model for heat transfer efficiency of metallic honeycomb structures [J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 6254–6258. doi: 10.1016/j.ijheatmasstransfer.2007.07.055
    [4] HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under non-proportional compression-dominant combined loads [J]. International Journal of Plasticity, 2006, 22(6): 1062–1088. doi: 10.1016/j.ijplas.2005.07.003
    [5] 周文华, 周百能. 夹芯泡沫材料性能及其在风电叶片上的应用 [J]. 天津科技, 2023, 50(1): 75–78. doi: 10.3969/j.issn.1006-8945.2023.01.020

    ZHOU W H, ZHOU B N. Applied research of sandwich foam in wind turbine blades [J]. Tianjin Science & Technology, 2023, 50(1): 75–78. doi: 10.3969/j.issn.1006-8945.2023.01.020
    [6] RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. doi: 10.1016/j.ijimpeng.2004.07.012
    [7] YUAN H, WU X W, ZHANG J X. Cutting failure behavior of foam core sandwich plates [J]. International Journal of Solids and Structures, 2024, 303: 113009. doi: 10.1016/j.ijsolstr.2024.113009
    [8] WU X W, GUO H Y, ZHANG J X. Bi-surface induction in biomimetic multi-gradient foam-filled tubes with enhanced energy absorption: theory, experiment, and simulation [J]. Journal of Applied Mechanics, 2025, 92(5): 051010. doi: 10.1115/1.4068061
    [9] PAZ J, DÍAZ J, ROMERA L, et al. Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures [J]. Composite Structures, 2015, 133: 499–507. doi: 10.1016/j.compstruct.2015.07.077
    [10] LURIE S, VOLKOV-BOGORODSKIY D, SOLYAEV Y, et al. Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins [J]. Composite Structures, 2020, 248: 112479. doi: 10.1016/j.compstruct.2020.112479
    [11] ANSARI M M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact [J]. Procedia Engineering, 2017, 173: 161–168. doi: 10.1016/j.proeng.2016.12.053
    [12] 潘腾, 卞晓兵, 袁名正, 等. 爆炸冲击波作用下聚氨酯-半球夹芯结构的动态响应 [J]. 兵工学报, 2023, 44(12): 3580–3589. doi: 10.12382/bgxb.2023.0645

    PAN T, BIAN X B, YUAN M Z, et al. Dynamic response of polyurethane-hemisphere sandwich structure under action of explosive shock wave [J]. Acta Armamentarii, 2023, 44(12): 3580–3589. doi: 10.12382/bgxb.2023.0645
    [13] ZHOU N, WANG J X, JIANG D K, et al. Study on the failure mode of a sandwich composite structure under the combined actions of explosion shock wave and fragments [J]. Materials & Design, 2020, 196: 109166. doi: 10.1016/j.matdes.2020.109166
    [14] FU K K, WANG H J, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels [J]. Composites Science and Technology, 2018, 165: 74–83. doi: 10.1016/j.compscitech.2018.06.013
    [15] CAGLAYAN C, OSKEN I, ATAALP A, et al. Impact response of shear thickening fluid filled polyurethane foam core sandwich composites [J]. Composite Structures, 2021, 243: 112171. doi: 10.1016/j.compstruct.2020.112171
    [16] WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2020, 150: 103803. doi: 10.1016/j.ijimpeng.2020.103803
    [17] LING J, LI J Q, LI F, et al. Low-velocity impact response of sandwich composite panels with shear thickening gel filled honeycomb cores [J]. Composites Communications, 2022, 32: 101136. doi: 10.1016/j.coco.2022.101136
    [18] WANG Y P, GONG X L, XUAN S H. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores [J]. Smart Materials and Structures, 2018, 27(6): 065008. doi: 10.1088/1361-665X/aab7dc
    [19] HE Q Y, CAO S S, WANG Y P, et al. Impact resistance of shear thickening fluid/kevlar composite treated with shear-stiffening gel [J]. Composites Part A: Applied Science and Manufacturing, 2018, 106: 82–90. doi: 10.1016/j.compositesa.2017.12.019
    [20] AKRAM S, JAFFERY S H I, KHAN M, et al. Numerical and experimental investigation of Johnson-Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach [J]. Advances in Mechanical Engineering, 2018, 10(9): 1–14. doi: 10.1177/1687814018797794
    [21] American Society for Testing and Materials. Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications: ASTM A240/A240M-20a [S]. West Conshohocken: ASTM International, 2004: 12.
    [22] LIU B, DU C B, DENG H X, et al. Study on the shear thickening mechanism of multifunctional shear thickening gel and its energy dissipation under impact load [J]. Polymer, 2022, 247: 124800. doi: 10.1016/j.polymer.2022.124800
    [23] WU L W, ZHAO F, LU Z Q, et al. Impact energy absorption composites with shear stiffening gel-filled negative Poisson’s ratio skeleton by Kirigami method [J]. Composite Structures, 2022, 298: 116009. doi: 10.1016/j.compstruct.2022.116009
    [24] WANG S, JIANG W Q, JIANG W F, et al. Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect [J]. Journal of Materials Chemistry C, 2014, 2(34): 7133–7140. doi: 10.1039/C4TC00903G
    [25] LI S Q, LI X, WANG Z H, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading [J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1–12. doi: 10.1016/j.compositesa.2015.09.025
    [26] LI X, ZHANG P W, WANG Z H, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. doi: 10.1016/j.compstruct.2013.10.034
    [27] LI S Q, LI X, WANG Z H, et al. Sandwich panels with layered graded aluminum honeycomb cores under blast loading [J]. Composite Structures, 2017, 173: 242–254. doi: 10.1016/j.compstruct.2017.04.037
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  102
  • PDF下载量:  47
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-05-12
  • 网络出版日期:  2025-05-12
  • 刊出日期:  2025-09-05

目录

    /

    返回文章
    返回