真三轴单面卸荷条件下环向应力对岩爆能量演化规律的影响

张华旭 黄鑫 郭佳奇 孙飞跃 朱子辉

张华旭, 黄鑫, 郭佳奇, 孙飞跃, 朱子辉. 真三轴单面卸荷条件下环向应力对岩爆能量演化规律的影响[J]. 高压物理学报, 2025, 39(12): 125301. doi: 10.11858/gywlxb.20251066
引用本文: 张华旭, 黄鑫, 郭佳奇, 孙飞跃, 朱子辉. 真三轴单面卸荷条件下环向应力对岩爆能量演化规律的影响[J]. 高压物理学报, 2025, 39(12): 125301. doi: 10.11858/gywlxb.20251066
ZHANG Huaxu, HUANG Xin, GUO Jiaqi, SUN Feiyue, ZHU Zihui. Effect of Circumferential Stress on Energy Evolution Mechanism of Rockburst under True Triaxial Unilateral Unloading Conditions[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125301. doi: 10.11858/gywlxb.20251066
Citation: ZHANG Huaxu, HUANG Xin, GUO Jiaqi, SUN Feiyue, ZHU Zihui. Effect of Circumferential Stress on Energy Evolution Mechanism of Rockburst under True Triaxial Unilateral Unloading Conditions[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125301. doi: 10.11858/gywlxb.20251066

真三轴单面卸荷条件下环向应力对岩爆能量演化规律的影响

doi: 10.11858/gywlxb.20251066
基金项目: 企业委托项目(JG-013);河南省青年科学基金(252300420846);河南省科技攻关项目(252102320041);焦作市科技攻关项目(2024210101);深地工程智能建造与健康运维全国重点实验室开放基金(SDGZ2543)
详细信息
    作者简介:

    张华旭(1999-),男,硕士研究生,主要从事隧道与地下工程防灾减灾研究. E-mail:underfuji@163.com

    通讯作者:

    郭佳奇(1981-),男,博士,教授,博士生导师,主要从事隧道与地下工程防灾减灾研究. E-mail:gjq519@163.com

  • 中图分类号: O347.1; O521.9

Effect of Circumferential Stress on Energy Evolution Mechanism of Rockburst under True Triaxial Unilateral Unloading Conditions

  • 摘要: 为研究环向应力对应变型岩爆灾变过程中能量演化的影响,采用新型真三轴岩爆试验系统,开展不同环向应力作用下单面快速卸荷、三向五面受力和竖向持续加载岩爆模拟试验,分析了花岗岩试样在不同环向应力下的岩爆破坏形态,结合能量守恒原理,揭示了试样岩爆灾变过程中各能量的演化规律。结果表明:不同环向应力作用下,耗散能与弹性应变能存在明显的能量竞争演化机制;环向应力会显著影响岩样的破坏程度和分布范围,环向应力为178.992 MPa的岩样卸荷面所形成的破坏程度最深;在高环向应力作用下,岩样内的弹性应变能在峰值点后释放速度加快,岩爆发展具有短时特征;耗散能转化率与环向应力成正比,弹性应变能转化率与环向应力成反比,而从能量的绝对值来看,环向应力的增大会显著提升弹性应变能的累积和耗散能的释放;岩样的总能量转化率最高,弹性能转化率次之,耗散能转化率最低,且三者与环向应力均呈正相关,环向应力的增大会明显加快总能量、弹性应变能及耗散能的转化速率。

     

  • 图  真三轴岩爆试验系统

    Figure  1.  True triaxial rockburst testing system

    图  花岗岩试样

    Figure  2.  Granite specimens

    图  代表性单元岩体开挖前后的受力状态

    Figure  3.  Stress state of representative unit rock mass before and after excavation

    图  岩样试验方法及应力路径

    Figure  4.  Rock specimen testing methodology and stress path

    图  岩体单元中耗散能和可释放弹性应变能的关系

    Figure  5.  Relationship between dissipated energy and releasable elastic strain energy in rock mass element

    图  不同环向应力下岩样的能量演化

    Figure  6.  Energy evolution of rock specimens under different circumferential stresses

    图  不同环向应力下岩样的破坏形态

    Figure  7.  Failure morphology of rock specimens under different circumferential stresses

    图  不同环向应力下峰值应力处的能量变化规律

    Figure  8.  Energy variation laws at peak stress under different circumferential stresses

    图  不同环向应力下峰值应力处的破坏形态

    Figure  9.  Failure morphology at peak stress under different circumferential stresses

    图  10  不同环向应力下的能量转化特征

    Figure  10.  Energy conversion characteristics under different circumferential stresses

    图  11  不同环向应力下峰值应力处的能量

    Figure  11.  Energy at peak stress under different circumferential stresses

    图  12  不同环向应力下各能量转化速率

    Figure  12.  Energy conversion rates under different circumferential stresses

    表  1  试验方案

    Table  1.   Test protocol

    Research project Specimen No. Stress state/MPa
    σ1 σ2 σ3(a)
    Circumferential stress T-1 89.496 54.966 5.000
    T-2 134.244 54.966 5.000
    T-3 178.992 54.966 5.000
    下载: 导出CSV
  • [1] HE S Y, LAI J X, ZHONG Y J, et al. Damage behaviors, prediction methods and prevention methods of rockburst in 13 deep traffic tunnels in China [J]. Engineering Failure Analysis, 2021, 121: 105178. doi: 10.1016/j.engfailanal.2020.105178
    [2] ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275–288. doi: 10.1007/s00603-011-0218-6
    [3] ZHANG G H, JIAO Y Y, WANG H. Outstanding issues in excavation of deep and long rock tunnels: a case study [J]. Canadian Geotechnical Journal, 2014, 51(9): 984–994. doi: 10.1139/cgj-2013-0087
    [4] 郭佳奇, 毋文涛, 颜天佑, 等. 爆破开挖扰动下深埋隧洞围岩含水裂隙起裂机制研究 [J]. 岩石力学与工程学报, 2024, 43(Suppl 2): 3597–3608. doi: 10.13722/j.cnki.jrme.2023.0367

    GUO J Q, WU W T, YAN T Y, et al. Study on crack initiation mechanism of water-bearing fractures in surrounding rock mass of deep-buried tunnel under blasting excavation disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(Suppl 2): 3597–3608. doi: 10.13722/j.cnki.jrme.2023.0367
    [5] KONICEK P, SCHREIBER J. Heavy rockbursts due to longwall mining near protective pillars: a case study [J]. International Journal of Mining Science and Technology, 2018, 28(5): 799–805. doi: 10.1016/j.ijmst.2018.08.010
    [6] FENG G L, FENG X T, CHEN B R, et al. Microseismic sequences associated with rockbursts in the tunnels of the Jinping Ⅱ hydropower station [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 89–100. doi: 10.1016/j.ijrmms.2015.06.011
    [7] DRIAD-LEBEAU L, LAHAIE F, AL HEIB M, et al. Seismic and geotechnical investigations following a rockburst in a complex French mining district [J]. International Journal of Coal Geology, 2005, 64(1/2): 66–78. doi: 10.1016/j.coal.2005.03.017
    [8] HU L H, LIANG X, LIANG Z Z, et al. Influence of radial stress on strainbursts under true triaxial conditions: insights from a distinct element modelling [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104577. doi: 10.1016/j.ijrmms.2020.104577
    [9] SONG Z L, YIN G Z, RANJITH P G, et al. Influence of the intermediate principal stress on sandstone failure [J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3033–3046. doi: 10.1007/s00603-019-01756-1
    [10] COOK N G W. The basic mechanics of rockbursts [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1963, 64(3): 71–81.
    [11] LUO S, GONG F Q, PENG K, et al. Rockburst proneness considering energy characteristics and sample shape effects [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(7): 2441–2465. doi: 10.1016/j.jrmge.2023.09.003
    [12] MANOUCHEHRIAN A, CAI M. Simulation of unstable rock failure under unloading conditions [J]. Canadian Geotechnical Journal, 2016, 53(1): 22–34. doi: 10.1139/cgj-2015-0126
    [13] CAI X, CHENG C Q, ZHOU Z L, et al. Rock mass watering for rock-burst prevention: some thoughts on the mechanisms deduced from laboratory results [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(11): 8725–8743. doi: 10.1007/s10064-021-02467-0
    [14] ZHAO H G, LIU C, HUANG G, et al. Experimental investigation on rockburst process and failure characteristics in trapezoidal tunnel under different lateral stresses [J]. Construction and Building Materials, 2020, 259: 119530. doi: 10.1016/j.conbuildmat.2020.119530
    [15] LU Y S, LI P F, CAI W. Experimental study on the evolutionary characteristics of acoustic signals produced by granite under biaxial compression with different intermediate principal stresses [J]. Frontiers in Earth Science, 2023, 11: 1271355. doi: 10.3389/feart.2023.1271355
    [16] LUO D N, XIE Y Q, LU S H, et al. Experimental study on the effects of water saturation on the microseismic and acoustic emission characteristics of sandstone in different stress states [J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 6583–6603. doi: 10.1007/s00603-022-03001-8
    [17] ZHAO H G, DENG B Z, HUANG G, et al. Influence of principal stress orientation on stress distribution and plastic zone evolution of rock surrounding tunnels [J]. Physics of Fluids, 2024, 36(2): 027123. doi: 10.1063/5.0187253
    [18] TANG J B, LI S, QIN G S, et al. Experiments on mechanical response and energy dissipation behavior of rockburst-prone coal samples under impact loading [J]. Shock and Vibration, 2021, 2021(1): 9924456. doi: 10.1155/2021/9924456
    [19] HUANG L Q, SI X F, LI X B, et al. Influence of maximum principal stress direction on the failure process and characteristics of D-shaped tunnels [J]. International Journal of Mining Science and Technology, 2022, 32(5): 1125–1143. doi: 10.1016/j.ijmst.2022.07.004
    [20] WANG G, LIU X Q, SONG L B, et al. Fracture evolution characteristics of strainburst under different gradient stress [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47(18): 3381–3398. doi: 10.1002/nag.3627
    [21] LIU X Q, XIA Y Y, LIN M Q, et al. Experimental study on the influence of tangential stress gradient on the energy evolution of strainburst [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 4515–4528. doi: 10.1007/s10064-021-02244-z
    [22] 孙飞跃, 郭佳奇, 张小兵, 等. 真三轴单面卸荷条件下隧道岩爆特征的径向应力梯度效应研究 [J]. 岩石力学与工程学报, 2025, 44(2): 373–390. doi: 10.3724/1000-6915.jrme.2024.0604

    SUN F Y, GUO J Q, ZHANG X B, et al. Research on the radial stress gradient effect of rockburst characteristics in tunnel under true triaxial condition with single-side unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2025, 44(2): 373–390. doi: 10.3724/1000-6915.jrme.2024.0604
    [23] HU L H, YU L Y, JU M H, et al. Effects of intermediate stress on deep rock strainbursts under true triaxial stresses [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(3): 659–682. doi: 10.1016/J.JRMGE.2022.06.008
    [24] CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763–772. doi: 10.1016/j.ijrmms.2007.07.026
    [25] CHEN Z Y, SU G S, JU J W, et al. Experimental study on energy dissipation of fragments during rockburst [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5369–5386. doi: 10.1007/s10064-019-01463-9
    [26] SU G S, FENG X T, WANG J H, et al. Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207–2226. doi: 10.1007/s00603-017-1218-y
    [27] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型 [J]. 岩土力学, 2014, 35(1): 1–6. doi: 10.16285/j.rsm.2014.01.028

    QIAN Q H. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump [J]. Rock and Soil Mechanics, 2014, 35(1): 1–6. doi: 10.16285/j.rsm.2014.01.028
    [28] 田朝阳, 兰恒星, 张宁, 等. 某交通线路色季拉山隧道高地应力岩爆风险定量预测研究 [J]. 工程地质学报, 2022, 30(3): 621–634. doi: 10.13544/j.cnki.jeg.2022-0113

    TIAN C Y, LAN H X, ZHANG N, et al. Quantitative prediction of rockburst risk in Sejila Tunel of one railway [J]. Journal of Engineering Geology, 2022, 30(3): 621–634. doi: 10.13544/j.cnki.jeg.2022-0113
    [29] 王长柏, 李海波, 谢冰, 等. 岩体爆破裂纹扩展影响因素分析 [J]. 煤炭科学技术, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036

    WANG C B, LI H B, XIE B, et al. Analysis on influencing factors of blasting crack expansion [J]. Coal Science and Technology, 2010, 38(10): 31–34, 61. doi: 10.13199/j.cst.2010.10.38.wangzhb.036
    [30] 苏国韶, 陈智勇, 蒋剑青, 等. 不同加载速率下岩爆碎块耗能特征试验研究 [J]. 岩土工程学报, 2016, 38(8): 1481–1489. doi: 10.11779/CJGE201608016

    SU G S, CHEN Z Y, JIANG J Q, et al. Experimental study on energy dissipating characteristics of rockburst fragments under different loading rates [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1481–1489. doi: 10.11779/CJGE201608016
    [31] 罗丹旎, 苏国韶, 何保煜. 不同饱水度花岗岩的真三轴岩爆试验研究 [J]. 岩土力学, 2019, 40(4): 1331–1340. doi: 10.16285/j.rsm.2017.2432

    LUO D N, SU G S, HE B Y. True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331–1340. doi: 10.16285/j.rsm.2017.2432
    [32] SU G S, JIANG J Q, FENG X T, et al. Influence of loading rate on strainburst: an experimental study [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3559–3573. doi: 10.1007/s10064-018-1351-1
    [33] GONG F Q, DAI J H, XU L. A strength-stress coupling criterion for rockburst: inspirations from 1114 rockburst cases in 197 underground rock projects [J]. Tunnelling and Underground Space Technology, 2023, 142: 105396. doi: 10.1016/j.tust.2023.105396
    [34] NIU W J, WEI S, FENG G L, et al. Influence of stress and geology on the most prone time of rockburst in drilling and blasting tunnel: 25 tunnel cases [J]. Engineering Geology, 2024, 340: 107680. doi: 10.1016/j.enggeo.2024.107680
    [35] 葛修润, 侯明勋. 三维地应力BWSRM测量新方法及其测井机器人在重大工程中的应用 [J]. 岩石力学与工程学报, 2011, 30(11): 2161–2180.

    GE X R, HOU M X. A new 3D in-situ rock stress measuring method: borehole wall stress relief method (BWSRM) and development of geostress measuring instrument based on BWSRM and its primary applications to engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2161–2180.
    [36] 郭佳奇, 程立攀, 朱斌忠, 等. 持续开挖效应下结构面剪切力学性质与能量特征研究 [J]. 岩土力学, 2023, 44(1): 131–143. doi: 10.16285/j.rsm.2022.0391

    GUO J Q, CHENG L P, ZHU B Z, et al. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131–143. doi: 10.16285/j.rsm.2022.0391
    [37] 张志镇, 高峰. 3种岩石能量演化特征的试验研究 [J]. 中国矿业大学学报, 2015, 44(3): 416–422. doi: 10.13247/j.cnki.jcumt.000321

    ZHANG Z Z, GAO F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process [J]. Journal of China University of Mining & Technology, 2015, 44(3): 416–422. doi: 10.13247/j.cnki.jcumt.000321
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  53
  • PDF下载量:  16
出版历程
  • 收稿日期:  2025-03-28
  • 修回日期:  2025-04-24
  • 录用日期:  2025-09-11
  • 网络出版日期:  2025-04-28
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回