高温高压下氮化硅的相变与力学性能调控

崔思雯 李世新 马帅领 连敏 赵行斌 陶强 朱品文

崔思雯, 李世新, 马帅领, 连敏, 赵行斌, 陶强, 朱品文. 高温高压下氮化硅的相变与力学性能调控[J]. 高压物理学报, 2025, 39(12): 120101. doi: 10.11858/gywlxb.20251060
引用本文: 崔思雯, 李世新, 马帅领, 连敏, 赵行斌, 陶强, 朱品文. 高温高压下氮化硅的相变与力学性能调控[J]. 高压物理学报, 2025, 39(12): 120101. doi: 10.11858/gywlxb.20251060
CUI Siwen, LI Shixin, MA Shuailing, LIAN Min, ZHAO Xingbin, TAO Qiang, ZHU Pinwen. Phase Transition and Mechanical Property Modulation of Silicon Nitride at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 120101. doi: 10.11858/gywlxb.20251060
Citation: CUI Siwen, LI Shixin, MA Shuailing, LIAN Min, ZHAO Xingbin, TAO Qiang, ZHU Pinwen. Phase Transition and Mechanical Property Modulation of Silicon Nitride at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 120101. doi: 10.11858/gywlxb.20251060

高温高压下氮化硅的相变与力学性能调控

doi: 10.11858/gywlxb.20251060
基金项目: 国家自然科学基金(12204254,52072188);浙江省自然科学基金(LQ23A040005);浙江省科技创新团队计划(2021R010,2021R01004)
详细信息
    作者简介:

    崔思雯(2000-),女,硕士研究生,主要从事氮化硅复合材料的高温高压合成及其性能研究.E-mail:csw22@mails.jlu.edu.cn

    通讯作者:

    马帅领(1989-),男,博士,副研究员,主要从事超硬多功能材料的高温高压合成及其物性研究. E-mail:msljlu@163.com

    朱品文(1972-),男,博士,教授,主要从事高温高压下新型多功能超硬材料的制备与物性研究. E-mail:zhupw@jlu.edu.cn

  • 中图分类号: O521.2

Phase Transition and Mechanical Property Modulation of Silicon Nitride at High Temperature and High Pressure

  • 摘要: 氮化硅(Si3N4)陶瓷因其独特的物理和化学特性,被认为是一种兼具高可靠性与经济性的新型结构陶瓷。然而,Si3N4具有强共价键,导致传统烧结难以使其致密化。为此,将高温高压烧结技术与MgO-Y2O3双元烧结助剂(Si3N4、MgO、Y2O3的质量比为94∶3∶3)相结合,实现了高温高压与液相协同烧结。通过设计双层对比实验组装,确保烧结温度相同,进而系统研究了双元烧结助剂对高压下Si3N4的烧结过程、相变行为、微观形貌和力学性能的影响。结果表明:MgO-Y2O3在烧结过程中形成液相,加速了α-Si3N4β-Si3N4的转变,使Si3N4相变的起始温度从1800 ℃降低至1650 ℃;同时,高压促进晶粒重排与烧结,成功制备出高致密的Si3N4陶瓷,其中,最优样品的维氏硬度达(24.5±1.9) GPa。研究工作为优化Si3N4陶瓷烧结工艺提供了新的有效策略。

     

  • 图  实验装置(a)、组装结构示意图(b)、温压控制曲线(c)以及烧结样品实物(d)

    Figure  1.  Experimental setup (a), schematic diagram of the assembly structure (b), temperature and pressure control curves (c) and optical photograph of the sintered sample (d)

    图  Si3N4(SN)和Si3N4-MgO-Y2O3(SNMY)样品的XRD谱

    Figure  2.  XRD spectra of Si3N4 (SN) and Si3N4-MgO-Y2O3 (SNMY) samples

    图  不同温度下Si3N4(SN)与Si3N4-MgO-Y2O3(SNMY)样品的体积密度对比

    Figure  3.  Comparison of bulk density of Si3N4 (SN) and Si3N4-MgO-Y2O3 (SNMY) samples at different temperatures

    图  Si3N4(SN)与Si3N4-MgO-Y2O3(SNMY)样品的维氏硬度对比

    Figure  4.  Comparison of Vickers hardness of Si3N4 (SN) and Si3N4-MgO-Y2O3 (SNMY) samples

    图  不同温度下Si3N4(SN)样品断裂面的SEM图像

    Figure  5.  SEM images of fracture surfaces of Si3N4 (SN) samples sintered at different temperatures

    图  不同温度下Si3N4-MgO-Y2O3(SNMY)样品断裂面的SEM图像

    Figure  6.  SEM images of fracture surfaces of Si3N4-MgO-Y2O3 (SNMY) samples sintered at different temperatures

    图  SNYM-1650 ℃样品抛光表面的SEM图像及相应的EDS图谱

    Figure  7.  SEM images and corresponding EDS patterns of the polished surfaces of the SNYM-1650 ℃ sample

    图  高致密Si3N4陶瓷在HTHP烧结过程中的致密化机理示意图

    Figure  8.  Schematic diagram of densification mechanism of highly dense Si3N4 ceramics during HTHP sintering process

    表  1  不同温度下Si3N4(SN)和Si3N4-MgO-Y2O3(SNMY)样品中β-Si3N4的质量分数

    Table  1.   Mass fractions of β-Si3N4 in Si3N4 (SN) and Si3N4-MgO-Y2O3 (SNMY) samples under different temperatures

    SN samples $w_{\beta \text{-}{\mathrm{Si_3N_4}}} $/% SNMY samples $w_{\beta \text{-}{\mathrm{Si_3N_4}}} $/%
    SN-1000 16.8 SNMY-1000 22.2
    SN-1200 16.9 SNMY-1200 23.0
    SN-1400 20.0 SNMY-1400 23.2
    SN-1600 21.2 SNMY-1600 19.8
    SN-1650 18.6 SNMY-1650 29.4
    SN-1700 20.3 SNMY-1700 30.7
    SN-1750 21.7 SNMY-1750 67.0
    SN-1800 21.2 SNMY-1800 74.3
    SN-1900 96.3 SNMY-1900 81.5
    SN-2100 96.3 SNMY-2100 82.5
    下载: 导出CSV
  • [1] RILEY F L. Silicon nitride and related materials [J]. Journal of the American Ceramic Society, 2000, 83(2): 245–265. doi: 10.1111/j.1151-2916.2000.tb01182.x
    [2] ZHANG Y, WANG H J, ZHANG W, et al. Preparation and study of porous Si3N4 ceramics with high strength [J]. Rare Metal Materials and Engineering, 2004, 33(6): 655–658.
    [3] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity [J]. Advanced Materials, 2011, 23(39): 4563–4567. doi: 10.1002/adma.201102462
    [4] 肖桂凤, 唐志平, 周昌国, 等. 氮化硅陶瓷层裂强度的研究 [J]. 高压物理学报, 2005, 19(3): 219–224. doi: 10.11858/gywlxb.2005.03.005

    XIAO G F, TANG Z P, ZHOU C G, et al. A study on the spallation behavior of silicon nitride [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 219–224. doi: 10.11858/gywlxb.2005.03.005
    [5] SOMIYA S. Hydrothermal corrosion of nitride and carbide of silicon [J]. Materials Chemistry and Physics, 2001, 67(1/2/3): 157–164. doi: 10.1016/S0254-0584(00)00434-X
    [6] DINIZ A E, GILES FERRER J A. A comparison between silicon nitride-based ceramic and coated carbide tools in the face milling of irregular surfaces [J]. Journal of Materials Processing Technology, 2008, 206(1/2/3): 294–304. doi: 10.1016/j.jmatprotec.2007.12.035
    [7] KAWAI N, TSURUI K, SHINDO D, et al. Fracture behavior of silicon nitride ceramics subjected to hypervelocity impact [J]. International Journal of Impact Engineering, 2011, 38(7): 542–545. doi: 10.1016/j.ijimpeng.2011.01.003
    [8] KONDO N, HYUGA H, KITA H. Joining of silicon nitride with silicon slurry via reaction bonding and post sintering [J]. Journal of the Ceramic Society of Japan, 2010, 118(1373): 9–12. doi: 10.2109/jcersj2.118.9
    [9] LIN Y D, YONG Z, LUO X S, et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform [J]. Nature Communications, 2022, 13(1): 6362. doi: 10.1038/s41467-022-34100-3
    [10] WANG L, SNIDLE R W, GU L. Rolling contact silicon nitride bearing technology: a review of recent research [J]. Wear, 2000, 246(1/2): 159–173. doi: 10.1016/S0043-1648(00)00504-4
    [11] PASUPULETI S, PEDDETTI R, SANTHANAM S, et al. The effect of nano-sized sintering aids on toughening behavior of silicon nitride [J]. Journal of Materials Science, 2008, 43(8): 2799–2805. doi: 10.1007/s10853-008-2543-z
    [12] MAZDIYASNI K S, COOKE C M. Consolidation, microstructure, and mechanical properties of Si3N4 doped with rare-earth oxides [J]. Journal of the American Ceramic Society, 1974, 57(12): 536–537. doi: 10.1111/j.1151-2916.1974.tb10806.x
    [13] ZHOU Y, HYUGA H, KUSANO D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides [J]. Journal of the American Ceramic Society, 2019, 102(4): 1579–1588. doi: 10.1111/jace.16015
    [14] LI S S, CHEN H B, WANG W D, et al. Effects of Y2O3/MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics [J]. International Journal of Applied Ceramic Technology, 2022, 19(5): 2873–2882. doi: 10.1111/ijac.14067
    [15] LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content [J]. Journal of the European Ceramic Society, 2021, 41(1): 274–283. doi: 10.1016/j.jeurceramsoc.2020.08.035
    [16] ZHU X W, HAYASHI H, ZHOU Y, et al. Influence of additive composition on thermal and mechanical properties of β-Si3N4 ceramics [J]. Journal of Materials Research, 2004, 19(11): 3270–3278. doi: 10.1557/JMR.2004.0416
    [17] 侯领, 沈维霞, 房超, 等. 高导热金刚石/铝复合材料的高温高压制备 [J]. 高压物理学报, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514

    HOU L, SHEN W X, FANG C, et al. High thermal conductivity of diamond/Al composites via high pressure and high temperature sintering [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
    [18] 邓雯丽, 邓福铭, 张鹏, 等. 纯PCBN高压烧结行为与工艺规律 [J]. 高压物理学报, 2018, 32(2): 023303. doi: 10.11858/gywlxb.20170617

    DENG W L, DENG F M, ZHANG P, et al. Sintering behavior and technical rule of pure PCBN synthesized under high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023303. doi: 10.11858/gywlxb.20170617
    [19] HE P H, HE Y L, LIANG W J, et al. Sintering polycrystalline silicon carbide composite ceramics with ultra-high hardness under high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2024, 125: 106918. doi: 10.1016/j.ijrmhm.2024.106918
    [20] 吴颖, 湛炎霞, 马锋杰, 等. 高压下超导氢化物研究进展 [J]. 中国科学: 物理学 力学 天文学, 2022, 52(7): 270006.

    WU Y, ZHAN Y X, MA F J, et al. New progress in superconducting hydrides under high pressure [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(7): 270006.
    [21] FILGUEIRA M, NASCIMENTOÁ L N, OLIVEIRA M P, et al. HTHP sintering of binderless Si3N4: structure, microstructure, mechanical properties and machining behavior [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 118. doi: 10.1007/s40430-018-1035-6
    [22] CHEN W, XU E G, LIU X Y, et al. Study on a novel Si3N4-based composite with the incorporation of N-GQDs produced from nano-lignin [J]. Ceramics International, 2024, 50(11): 19534–19542. doi: 10.1016/j.ceramint.2024.03.052
    [23] TONG Z W, JI H M, LI X L, et al. Microstructure control and optimization of low temperature pressureless sintered silicon nitride-barium aluminosilicate composites [J]. Journal of the European Ceramic Society, 2020, 40(12): 4177–4183. doi: 10.1016/j.jeurceramsoc.2020.05.009
    [24] HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering [J]. Journal of the European Ceramic Society, 2022, 42(12): 4846–4854. doi: 10.1016/j.jeurceramsoc.2022.04.049
    [25] TIEGS T N, MONTGOMERY F C, SCHROEDER J L, et al. Effect of powder characteristics on the α- to β-Si3N4 transformation kinetics [M]//SINGH J P. Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures B: Ceramic Engineering and Science Proceedings. Westerville: The American Ceramic Society, 1997.
    [26] BOCANEGRA-BERNAL M H, MATOVIC B. Dense and near-net-shape fabrication of Si3N4 ceramics [J]. Materials Science and Engineering: A, 2009, 500(1/2): 130–149. doi: 10.1016/j.msea.2008.09.015
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  75
  • PDF下载量:  50
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-04-17
  • 刊出日期:  2025-12-05

目录

    /

    返回文章
    返回