Al-Cu周期叠层梯度材料的流延法制备及准等熵加载特性

吴宜檑 陈宬 李培博 张睿智 孙一 罗国强 沈强

吴宜檑, 陈宬, 李培博, 张睿智, 孙一, 罗国强, 沈强. Al-Cu周期叠层梯度材料的流延法制备及准等熵加载特性[J]. 高压物理学报, 2025, 39(7): 070101. doi: 10.11858/gywlxb.20251045
引用本文: 吴宜檑, 陈宬, 李培博, 张睿智, 孙一, 罗国强, 沈强. Al-Cu周期叠层梯度材料的流延法制备及准等熵加载特性[J]. 高压物理学报, 2025, 39(7): 070101. doi: 10.11858/gywlxb.20251045
WU Yilei, CHEN Cheng, LI Peibo, ZHANG Ruizhi, SUN Yi, LUO Guoqiang, SHEN Qiang. Tape Casting Preparation and Quasi-Isentropic Loading Properties of Al-Cu Periodic Laminated Gradient Materials[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 070101. doi: 10.11858/gywlxb.20251045
Citation: WU Yilei, CHEN Cheng, LI Peibo, ZHANG Ruizhi, SUN Yi, LUO Guoqiang, SHEN Qiang. Tape Casting Preparation and Quasi-Isentropic Loading Properties of Al-Cu Periodic Laminated Gradient Materials[J]. Chinese Journal of High Pressure Physics, 2025, 39(7): 070101. doi: 10.11858/gywlxb.20251045

Al-Cu周期叠层梯度材料的流延法制备及准等熵加载特性

doi: 10.11858/gywlxb.20251045
基金项目: 国家重点研发计划(2021YFB3802300);国家自然科学基金(51932006);广东省基础研究和应用基础研究重大项目(2021B0301030001);湖北隆中实验室自主创新研究项目(2022ZZ-32)
详细信息
    作者简介:

    吴宜檑(1999-),男,硕士研究生,主要从事周期叠层梯度飞片设计与制备技术研究. E-mail:15225331520@163.com

    通讯作者:

    孙 一(1994-),男,博士,副研究员,博士生导师,主要从事波阻抗梯度飞片设计与制备技术研究. E-mail:sunyiwhut@163.com

  • 中图分类号: O521.2; O521.3; O347

Tape Casting Preparation and Quasi-Isentropic Loading Properties of Al-Cu Periodic Laminated Gradient Materials

  • 摘要: 周期叠层梯度材料具有独立可控的波阻抗分布和极少的物相反应,已被用于实现准等熵加载。然而,由于制备技术的局限性,目前制备的周期叠层梯度材料的波系作用时间只有纳秒量级,难以获得更高量级的加载时间。为此,系统探究了流延技术,成功通过流延法结合低温致密化技术制备出大尺寸Al-Cu周期叠层梯度材料。通过微观结构表征和动态加载实验,验证了其质量和准等熵加载特性。结果表明:材料梯度结构明显,层间平行度高,层界面结合良好,无裂纹缺陷,且无金属间化合物生成;材料致密度达95.8%,整体变形量小于15 μm。Al-Cu周期叠层梯度材料以510.6 m/s的驱动速度加载6 μm厚Al靶时,加载波形振荡上升,加载时间接近1 μs。通过对实验材料Al/Cu周期层厚和Cu层波阻抗进行修正,设计模拟结果与实验曲线在加载趋势上吻合较好,表现出良好的准等熵加载特性。研究结果可为周期叠层梯度材料制备技术提供理论依据和技术支持。

     

  • 图  Al-Cu周期叠层梯度材料:(a) 梯度结构示意图,(b) Al-Cu复合层中Al层和Cu层的厚度占比,(c) 波阻抗随位置的变化曲线

    Figure  1.  Al-Cu periodic laminated gradient materials: (a) schematic diagram of the gradient structure; (b) the thickness ratios of Al and Cu layer in the Al-Cu composite layer; (c) distribution of wave impedance with position

    图  Al-Cu周期叠层梯度材料制备流程

    Figure  2.  Flow chart of material preparation of Al-Cu periodic laminated gradient materials

    图  (a) 基于轻气炮的飞片冲击实验装置示意图,(b) 冲击实验侧视图(直径为16 mm的GDI冲击直径为18 mm的6 μm厚铝靶和6 mm厚LiF窗口)

    Figure  3.  (a) Schematic diagram of flyer plate impact experiments using a light-gas gun; (b) side view of an impact experiment in which the GDI with a diameter of 16 mm impacts a 6 μm-thick Al target and 6 mm-thick LiF window, both with a diameter of 18 mm

    图  原始粉体的SEM图像和粒径尺寸分布

    Figure  4.  SEM images and particle size distribution of the pristine powders

    图  不同固含量的Al和Cu流延浆料黏度随剪切速率的变化曲线

    Figure  5.  Viscosity-shear rate curves of Al and Cu cast paste with different solid contents

    图  黏结剂含量对流延素片的作用示意图

    Figure  6.  Schematic diagram of the effect of binder content on the fluid vein sheet

    图  不同黏结剂含量的Al和Cu流延浆料黏度随剪切速率的变化曲线

    Figure  7.  Viscosity-shear rate curves of Al and Cu cast paste with different binder contents

    图  纯Cu和纯Al流延素片的表征:(a)~(d) Cu素片的宏观形貌、微观形貌、加工形貌、厚度,(e)~(h) Al素片的宏观形貌、微观形貌、加工形貌、厚度

    Figure  8.  Characterization of the pure Cu and pure Al cast vein sheets: (a)−(d) macroscopic morphology, microscopic morphology, processed morphology and thickness of Cu cast vein sheet; (e)−(h) macroscopic morphology, microscopic morphology, processed morphology and thickness of Al cast vein sheet

    图  Al-Cu周期叠层梯度材料的微观结构

    Figure  9.  Microstructures of Al-Cu periodic laminated gradient material

    图  10  Al-Cu周期叠层梯度材料的XRD谱

    Figure  10.  XRD pattern of the Al-Cu periodic laminated gradient materials

    图  11  Al-Cu周期叠层梯度材料层间界面的TEM图像

    Figure  11.  TEM images of the interlayer interface of Al-Cu periodic laminated gradient materials

    图  12  Al-Cu周期叠层梯度材料的平面度

    Figure  12.  Planarity of the Al-Cu periodic laminated gradient materials

    图  13  Al-Cu周期叠层梯度材料撞击6 μm厚Al靶的加载结果

    Figure  13.  Loading results of Al-Cu periodic laminated gradient material impacting Al target with a thickness of 6 μm

    图  14  Al-Cu周期叠层梯度材料的波传播示意图

    Figure  14.  Schematic diagram of wave propagation in the Al-Cu periodic laminated gradient materials

    图  15  Al-Cu周期叠层梯度材料的OM图像(a)以及实验层厚与设计厚度的偏差(b)

    Figure  15.  OM plots (a) and experimental thickness and thickness deviation plots (b) of the Al-Cu periodic laminated gradient materials

    图  16  经厚度修正后Al-Cu周期叠层梯度材料的粒子速度曲线

    Figure  16.  Particle velocity curves for the Al-Cu periodic laminated gradient material after thickness correction

    图  17  经波阻抗修正后Al-Cu周期叠层梯度材料的粒子速度曲线

    Figure  17.  Particle velocity curves for the Al-Cu periodic laminated gradient material after wave impedance correction

    表  1  Al-Cu周期叠层梯度材料层间界面的能谱点分析数据

    Table  1.   Energy spectral point analysis data for the interlayer interface of the Al-Cu periodic laminated gradient materials

    Point Atom fraction/%
    Al Cu C O
    1 0 95.75 1.22 3.02
    2 8.06 88.51 3.43 0
    3 0 94.45 2.73 2.82
    4 95.64 0 3.03 1.33
    5 7.28 92.72 0 0
    下载: 导出CSV

    表  2  Al-Cu周期叠层梯度材料不同物相的物性参数

    Table  2.   Physical parameters of different physical phases of the Al-Cu periodic laminated gradient material

    PhaseDensity/(g·cm−3)Sound velocity/(km·s−1)Wave impedance/(g·cm−2·μs−1)
    C2.2034.459.80
    Al2.7125.3314.45
    Cu8.9243.9134.89
    下载: 导出CSV
  • [1] GLEASON A E, BOLME C A, LEE H J, et al. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation [J]. Nature Communications, 2017, 8(1): 1481. doi: 10.1038/s41467-017-01791-y
    [2] MILLOT M, HAMEL S, RYGG J R, et al. Experimental evidence for superionic water ice using shock compression [J]. Nature Physics, 2018, 14(3): 297–302. doi: 10.1038/s41567-017-0017-4
    [3] FRATANDUONO D E, MILLOT M, BRAUN D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression [J]. Science, 2021, 372(6546): 1063–1068. doi: 10.1126/science.abh0364
    [4] 单连强, 高宇林, 辛建婷, 等. 激光驱动气库靶对铝的准等熵压缩实验研究 [J]. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204

    SHAN L Q, GAO Y L, XIN J T, et al. Laser-driven reservoir target for quasi-isentropic compression in aluminum [J]. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [5] 刘海庆, 段卓平, 蔡进涛, 等. 准等熵加载下PBXC03炸药起爆响应特性实验研究 [J]. 北京理工大学学报, 2018, 38(8): 792–796. doi: 10.15918/j.tbit1001-0645.2018.08.004

    LIU H Q, DUAN Z P, CAI J T, et al. Experimental research of characteristics of initiation response of PBXC03 under quasi-isentropic loading [J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 792–796. doi: 10.15918/j.tbit1001-0645.2018.08.004
    [6] NGUYEN J H, ORLIKOWSKI D, STREITZ F H, et al. Specifically prescribed dynamic thermodynamic paths and resolidification experiments [J]. AIP Conference Proceedings, 2004, 706(1): 1225–1230. doi: 10.1063/1.1780459
    [7] JARMAKANI H, MCNANEY J M, KAD B, et al. Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading [J]. Materials Science and Engineering: A, 2007, 463(1/2): 249–262. doi: 10.1016/j.msea.2006.09.118
    [8] DARGAUD M, FORQUIN P. A shockless plate-impact spalling technique, based on wavy-machined flyer-plates, to evaluate the strain-rate sensitivity of ceramic tensile strength [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 73–88. doi: 10.1007/s40870-021-00317-4
    [9] 贺芝宇, 周华珍, 黄秀光, 等. 激光加载下铝材料的冲击温度测量 [J]. 强激光与粒子束, 2016, 28(4): 042002. doi: 10.11884/HPLPB201628.122002

    HE Z Y, ZHOU H Z, HUANG X G, et al. Measurements of aluminum’s shock temperature on SG-Ⅱ high-power laser facility [J]. High Power Laser and Particle Beams, 2016, 28(4): 042002. doi: 10.11884/HPLPB201628.122002
    [10] DUAN X X, ZHANG C, GUAN Z Y, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading [J]. Journal of Applied Physics, 2020, 128(1): 015902. doi: 10.1063/5.0003869
    [11] 薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展 [J]. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159

    XUE Q X, JIANG S E, WANG Z B, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [12] HALL C A, ASAY J R, KNUDSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178
    [13] KNUDSON M D, HANSON D L, BAILEY J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques [J]. Physical Review B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
    [14] AO T, ASAY J R, CHANTRENNE S, et al. A compact strip-line pulsed power generator for isentropic compression experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013903. doi: 10.1063/1.2827509
    [15] BROWN N P, SPECHT P E, BROWN J L. Quasi-isentropic compression of an additively manufactured aluminum alloy to 14.8 GPa [J]. Journal of Applied Physics, 2022, 132(22): 225106. doi: 10.1063/5.0127989
    [16] REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
    [17] ZHONG T, LIU X, ZHANG Y Y, et al. Penetration dynamics of a carbonate sand: a synchrotron phase contrast imaging study [J]. International Journal of Impact Engineering, 2021, 152: 103839. doi: 10.1016/j.ijimpeng.2021.103839
    [18] YE S J, XU Y F, ZHOU Y, et al. Penetration dynamics of steel spheres into a ballistic gelatin: experiments, nondimensional analysis, and finite element modeling [J]. International Journal of Impact Engineering, 2022, 162: 104144. doi: 10.1016/j.ijimpeng.2021.104144
    [19] 沈强, 张联盟, 王传彬, 等. 梯度飞片材料的波阻抗分布设计与优化 [J]. 物理学报, 2003, 52(7): 1663–1667. doi: 10.7498/aps.52.1663

    SHEN Q, ZHANG L M, WANG C B, et al. Design and optimization of wave impedance distribution for flyer materials [J]. Acta Physica Sinica, 2003, 52(7): 1663–1667. doi: 10.7498/aps.52.1663
    [20] 窦金锋. W-Mo-Ti体系波阻抗梯度飞片的设计及相关物性研究 [D]. 武汉: 武汉理工大学, 2002.

    DOU J F. Design of W-Mo-Ti flier-plate with graded wave impedanceand study on its relative physical properties [D]. Wuhan: Wuhan University of Technology, 2002.
    [21] HAYASHI T, UGO R, MORIMOTO Y. Experimental observation of stress waves propagating in laminated composites [J]. Experimental Mechanics, 1986, 26(2): 169–174. doi: 10.1007/BF02320011
    [22] ANDERSON M U, CHHABILDAS L C, REINHART W D. Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors [J]. AIP Conference Proceedings, 1998, 429(1): 841–844. doi: 10.1063/1.55681
    [23] CHHABILDAS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1): 183–194. doi: 10.1016/0734-743X(95)99845-I
    [24] SUN L, SNELLER A, KWON P. Fabrication of alumina/zirconia functionally gradedmaterial: from optimization of processing parameters to phenomenological constitutive models [J]. Materials Science and Engineering: A, 2008, 488(1/2): 31–38. doi: 10.1016/j.msea.2007.10.044
    [25] MARTIN L P, PATTERSON J R, ORLIKOWSKI D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments [J]. Journal of Applied Physics, 2007, 102(2): 023507. doi: 10.1063/1.2756058
    [26] SUN W, LI X J, HOKAMOTO K. Fabrication of graded density impactor via underwater shock wave and quasi-isentropic compression testing at two-stage gas gun facility [J]. Applied Physics A, 2014, 117(4): 1941–1946. doi: 10.1007/s00339-014-8663-1
    [27] ZHANG L M, ZHOU X Z, LUO G Q, et al. Microstructure and properties of aluminum-copper composites prepared by hot-pressure sintering [J]. Key Engineering Materials, 2014, 616: 212–216. doi: 10.4028/www.scientific.net/KEM.616.212
    [28] YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. Review of Scientific Instruments, 2013, 84(10): 103909. doi: 10.1063/1.4826565
    [29] KELLY J P, NGUYEN J H, LIND J, et al. Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments [J]. Journal of Applied Physics, 2019, 125(14): 145902. doi: 10.1063/1.5055398
    [30] BROWN J L, ADAMS D P, ALEXANDER C S, et al. Estimates of Ta strength at ultrahigh pressures and strain rates using thin-film graded-density impactors [J]. Physical Review B, 2019, 99(21): 214105. doi: 10.1103/PhysRevB.99.214105
    [31] GAO W L, ZHANG R Z, WANG J, et al. Enhancing laser-driven flyer velocity by optimizing of modulation period of Al/Ti reactive multilayer films [J]. Journal of Vacuum Science & Technology A, 2023, 41(6): 063414. doi: 10.1116/6.0003066
    [32] 江宇达, 张睿智, 吴楯, 等. Ti-Pt周期调制梯度材料的制备及准等熵加载特性 [J]. 高压物理学报, 2024, 38(6): 064205. doi: 10.11858/gywlxb.20240816

    JIANG Y D, ZHANG R Z, WU D, et al. Preparation and quasi-isentropic loading characteristics of Ti-Pt periodically modulated gradient material [J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064205. doi: 10.11858/gywlxb.20240816
    [33] KE B Y, ZHANG C C, CHENG S L, et al. Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries [J]. Interdisciplinary Materials, 2024, 3(4): 621–631. doi: 10.1002/idm2.12174
    [34] 李代颖, 刘济宽, 陈学通. 超细球形铜粉研究进展 [J]. 船电技术, 2013, 33(3): 42–44. doi: 10.3969/j.issn.1003-4862.2013.03.014

    LI D Y, LI J K, CHEN X T. Progress in preparation of ultrafine spherical copper powder [J]. Marine Electric & Electronic Technology, 2013, 33(3): 42–44. doi: 10.3969/j.issn.1003-4862.2013.03.014
    [35] SHANG Q S, WANG Z J, LI J, et al. Gel-tape-casting of aluminum nitride ceramics [J]. Journal of Advanced Ceramics, 2017, 6(1): 67–72. doi: 10.1007/s40145-016-0211-3
    [36] LUO G Q, LI P B, HU J N, et al. Synergistic effect of Ag and C addition into Al-Cu matrix composites [J]. Journal of Materials Science, 2022, 57(24): 11013–11025. doi: 10.1007/s10853-022-07189-6
    [37] HU J N, TAN Y, LI X M, et al. Structure characterization and impact effect of Al-Cu graded materials prepared by tape casting [J]. Materials, 2022, 15(14): 4834. doi: 10.3390/ma15144834
    [38] GU J F, FU S, PING H, et al. Idea of macro-scale and micro-scale prestressed ceramics [J]. Interdisciplinary Materials, 2024, 3(6): 897–906. doi: 10.1002/idm2.12224
    [39] 郭浩天. Cu/Mo叠层复合材料热响应行为数值模拟研究 [D]. 西安: 长安大学, 2018.

    GUO H T. Numerical simulation of thermal response behaviorof Cu/Mo laminated composite materials [D]. Xi’an: Chang’an University, 2018.
    [40] HUANG J, ZHANG J, ZHU K, et al. Using graded density impactor to achieve quasi-isentropic loading with stress and strain-rate controlled [J]. Journal of Applied Physics, 2024, 135(8): 085901. doi: 10.1063/5.0189243
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  31
  • PDF下载量:  15
出版历程
  • 收稿日期:  2025-03-10
  • 修回日期:  2025-04-24
  • 网络出版日期:  2025-04-28
  • 刊出日期:  2025-07-07

目录

    /

    返回文章
    返回