FCCZ点阵结构优化与力学性能分析

刘弘炜 邱吉 王宇 李志强

刘弘炜, 邱吉, 王宇, 李志强. FCCZ点阵结构优化与力学性能分析[J]. 高压物理学报, 2025, 39(9): 094201. doi: 10.11858/gywlxb.20251044
引用本文: 刘弘炜, 邱吉, 王宇, 李志强. FCCZ点阵结构优化与力学性能分析[J]. 高压物理学报, 2025, 39(9): 094201. doi: 10.11858/gywlxb.20251044
LIU Hongwei, QIU Ji, WANG Yu, LI Zhiqiang. Optimization and Mechanical Performance Analysis of FCCZ Lattice Structure[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094201. doi: 10.11858/gywlxb.20251044
Citation: LIU Hongwei, QIU Ji, WANG Yu, LI Zhiqiang. Optimization and Mechanical Performance Analysis of FCCZ Lattice Structure[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 094201. doi: 10.11858/gywlxb.20251044

FCCZ点阵结构优化与力学性能分析

doi: 10.11858/gywlxb.20251044
基金项目: 国家自然科学基金(12272255,12302477)
详细信息
    作者简介:

    刘弘炜(1996-),男,硕士研究生,主要从事冲击动力学研究. E-mail:liuhongwei20222022@163.com

    通讯作者:

    李志强(1973-),男,博士,教授,主要从事冲击动力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O341; O521.9

Optimization and Mechanical Performance Analysis of FCCZ Lattice Structure

  • 摘要: 针对航空航天等领域对高性能材料的迫切需求,探讨了一种新型高熵合金Al0.3NbTi3VZr1.5结合点阵结构的动态压缩行为及吸能特性。为解决传统Z向杆件面心晶胞(face centered cubic unit cell with Z-struts,FCCZ)点阵结构在复杂载荷条件下力学性能不足的问题,对FCCZ点阵结构进行了几何优化设计,并结合有限元分析方法系统研究了其力学响应。结果表明:优化后的斜杆交叉支点孔洞(BC)型和变截面斜杆(BV)型点阵结构显著改善了材料的应力分布,提升了比强度和吸能特性。优化构型中,BV1型的比强度较原结构提高了31%;BC2型的比吸能增加了9%,综合性能最优。此外,孔径和变截面圆角对结构优化有显著的敏感性。研究成果为高熵合金与点阵结构的高效结合提供了理论依据和设计参考,可为航空航天、汽车制造等领域中轻量化结构的优化设计提供指导。

     

  • 图  动态加载实验装置示意图

    Figure  1.  Schematic diagram of dynamic loading experimental device

    图  Al0.3NbTi3VZr1.5 HEA的动态应力-应变曲线

    Figure  2.  Dynamic stress-strain curves of Al0.3NbTi3VZr1.5 HEA

    图  SHPB实验的数值模拟结果:(a) 应力云图,(b) 实验与数值模拟对比

    Figure  3.  Numerical simulation results of SHPB experiment: (a) stress contours;(b) comparison between experiment and numerical simulation

    图  FCCZ点阵结构模型及其单胞示意图

    Figure  4.  FCCZ lattice structure and its units

    图  6061-T6铝合金与Al0.3NbTi3VZr1.5 HEA FCCZ点阵结构的动态响应

    Figure  5.  Dynamic responses of 6061-T6 aluminum alloy and FCCZ lattice structures of Al0.3NbTi3VZr1.5 HEA

    图  FCCZ点阵结构的原始、边缘增强优化、中心开孔优化和变截面优化的三维模型

    Figure  6.  Three-dimensional models showing geometric parameters of the FCCZ lattice structure for original, edge-reinforced optimization, center-excavated optimization, and variable cross-section optimization

    图  FCCZ和BE优化结构的压缩响应对比:(a) 工程应力-应变曲线,(b) 屈服强度和平台应力

    Figure  7.  Comparison of compression response between FCCZ and BE optimization structures: (a) engineering stress-strain curves; (b) yield strength and plateau stress

    图  FCCZ和BC优化结构的压缩响应对比:(a) 工程应力-应变曲线,(b) 屈服强度和平台应力

    Figure  8.  Comparison of compression response between FCCZ and BC optimization structures: (a) engineering stress-strain curves; (b) yield strength and plateau stress

    图  FCCZ和BV优化结构的压缩响应对比:(a) 工程应力-应变曲线,(b) 屈服强度和平台应力

    Figure  9.  Comparison of compression response between FCCZ and BV optimization structures: (a) engineering stress-strain curves; (b) yield strength and plateau stress

    图  10  FCCZ和3类优化结构在应变为0、0.1和0.2时的von Mises应力分布

    Figure  10.  Von Mises stress distributions of FCCZ and three optimized configurations at strains of 0, 0.1, and 0.2

    图  11  FCCZ和3类优化结构的载荷-位移曲线对比

    Figure  11.  Comparison of load-displacement curves between FCCZ and three optimized configurations

    图  12  FCCZ和3类优化结构的吸能特性对比

    Figure  12.  Comparison of energy absorption characteristics among FCCZ and three optimized configurations

  • [1] CUI X T, ZHANG H W, WANG S X, et al. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration [J]. Materials & Design, 2011, 32(2): 815–821.
    [2] EVANS A G. Lightweight materials and structures [J]. MRS Bulletin, 2001, 26(10): 790–797. doi: 10.1557/mrs2001.206
    [3] WANG D F, LI S H. Material selection decision-making method for multi-material lightweight automotive body driven by performance [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(4): 730–746. doi: 10.1177/14644207211055661
    [4] XIONG F, WANG D F, MA Z D, et al. Structure-material integrated multi-objective lightweight design of the front end structure of automobile body [J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 829–847. doi: 10.1007/s00158-017-1778-1
    [5] LI Z M, TASAN C C, PRADEEP K G, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior [J]. Acta Materialia, 2017, 131: 323–335. doi: 10.1016/j.actamat.2017.03.069
    [6] TASAN C C, DIEHL M, YAN D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design [J]. Annual Review of Materials Research, 2015, 45: 391–431. doi: 10.1146/annurev-matsci-070214-021103
    [7] HUA X J, HU P, XING H R, et al. Development and property tuning of refractory high-entropy alloys: a review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231–1265. doi: 10.1007/s40195-022-01382-x
    [8] ZHOU J L, CHENG Y H, CHEN Y X, et al. Composition design and preparation process of refractory high-entropy alloys: a review [J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105836. doi: 10.1016/j.ijrmhm.2022.105836
    [9] LIU K, WANG J Y, LI X, et al. A new lightweight Al2.7TiVCrCu high entropy alloy with excellent strength and toughness after homogenization treatment [J]. Materials Science and Engineering: A, 2023, 869: 144779. doi: 10.1016/j.msea.2023.144779
    [10] FAN X J, QU R T, ZHANG Z F. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy [J]. Journal of Materials Science & Technology, 2022, 123: 70–77.
    [11] JIANG W T, WANG X H, KANG H J, et al. Microstructure and mechanical properties of AlNbTiVZr system refractory high entropy alloys [J]. Journal of Alloys and Compounds, 2022, 925: 166767. doi: 10.1016/j.jallcom.2022.166767
    [12] ZHANG Y S, WANG H M, ZHU Y Y, et al. High specific yield strength and superior ductility of a lightweight refractory high-entropy alloy prepared by laser additive manufacturing [J]. Additive Manufacturing, 2023, 77: 103813. doi: 10.1016/j.addma.2023.103813
    [13] 申会鹏, 张天宇, 李行雨, 等. 点阵结构单元力学性能及在结构轻量化设计中的应用 [J]. 机电工程, 2024, 41(7): 1276–1284. doi: 10.3969/j.issn.1001-4551.2024.07.016

    SHEN H P, ZHANG T Y, LI H Y, et al. Mechanical performance of lattice structure units and its application in lightweight design of structures [J]. Journal of Mechanical & Electrical Engineering, 2024, 41(7): 1276–1284. doi: 10.3969/j.issn.1001-4551.2024.07.016
    [14] 王鹏欢, 汤名锴, 王森林. 激光选区熔化成形多层级Gyroid点阵结构的力学性能研究 [J]. 力学学报, 2024, 57(1): 148–161.

    WANG P H, TANG M K, WANG S L. Mechanical properties of multi-level Gyroid lattice structures fabricated by selective laser melting [J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 148–161.
    [15] 常超, 马桢, 褚井泉, 等. 基于增材制造空心点阵结构的压缩变形研究 [J]. 高压物理学报, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885

    CHANG C, MA Z, CHU J Q, et al. Research on compression deformation of hollow lattice structure based on additive manufacturing [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885
    [16] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用 [J]. 航空制造技术, 2018, 61(10): 16–25.

    WANG X M, SU Y D, WU B, et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions [J]. Aeronautical Manufacturing Technology, 2018, 61(10): 16–25.
    [17] 顾晓春, 刘亚波, 钱远宏, 等. 含缺陷点阵结构的力学性能影响研究 [J]. 失效分析与预防, 2020, 15(2): 91–96. doi: 10.3969/j.issn.1673-6214.2020.02.005

    GU X C, LIU Y B, QIAN Y H, et al. Study on mechanical properties of lattice structure with defects [J]. Failure Analysis and Prevention, 2020, 15(2): 91–96. doi: 10.3969/j.issn.1673-6214.2020.02.005
    [18] 陈昇声, 张旭. 不同热处理方式对AlSi10Mg点阵结构压缩性能的影响 [J]. 材料科学, 2024, 14(6): 946–956. doi: 10.12677/ms.2024.146107

    CHEN S S, ZHANG X. The influence of different heat treatment methods on the compressive performance of AlSi10Mg lattice structure [J]. Material Sciences, 2024, 14(6): 946–956. doi: 10.12677/ms.2024.146107
    [19] 郭璐, 刘志芳, 李世强, 等. 改进型FCC晶格材料设计与吸能特性 [J]. 高压物理学报, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853

    GUO L, LIU Z F, LI S Q, et al. Design and energy absorption characteristic of improved FCC lattice materials [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
    [20] 李腾, 张晨帆, 邓庆田, 等. 基于TPU材料层级结构的优化设计及吸能特性 [J]. 高压物理学报, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542

    LI T, ZHANG C F, DENG Q T, et al. Optimized design and energy absorption of TPU material based on hierarchical structure [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064104. doi: 10.11858/gywlxb.20220542
    [21] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020: 90–95.

    XIN C L, XUE Z Q, TU J, et al. Finite element analysis handbook of common material parameters [M]. Beijing: China Machine Press, 2020: 90–95.
    [22] ZHOU X, QU C, LUO Y, et al. Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures [J]. Journal of Materials Engineering and Performance, 2021, 30(12): 8763–8770. doi: 10.1007/s11665-021-06242-w
    [23] 张武昆, 赵剑, 谭永华, 等. 不同增强方向的带支柱体心立方点阵及其填充结构的压缩力学性能分析 [J]. 中国机械工程, 2024, 35(9): 1642–1652. doi: 10.3969/j.issn.1004-132X.2024.09.014

    ZHANG W K, ZHAO J, TAN Y H, et al. Analysis of compressive mechanics properties of body centered cubic lattice with pillars in different reinforcement directions and their filling structures [J]. China Mechanical Engineering, 2024, 35(9): 1642–1652. doi: 10.3969/j.issn.1004-132X.2024.09.014
    [24] YANG Y, WANG S, YAN S, et al. Enhancing the mechanical performance of additively manufactured lattice structure via locally reinforcing struts: coupled influence of structure and microstructure [J]. Materials Science and Engineering: A, 2025, 927: 147989. doi: 10.1016/j.msea.2025.147989
    [25] CAO X F, XIAO D B, LI Y, et al. Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure [J]. Thin-Walled Structures, 2020, 148: 106586. doi: 10.1016/j.tws.2019.106586
    [26] FAN X J, TANG Q, FENG Q X, et al. Design, mechanical properties and energy absorption capability of graded-thickness triply periodic minimal surface structures fabricated by selective laser melting [J]. International Journal of Mechanical Sciences, 2021, 204: 106586. doi: 10.1016/j.ijmecsci.2021.106586
    [27] XU S C, CHEN N, QIN H Y, et al. Biomimetic study of a honeycomb energy absorption structure based on straw micro-porous structure [J]. Biomimetics, 2024, 9(1): 60. doi: 10.3390/biomimetics9010060
    [28] ZHAO X J, LI Z Z, ZOU Y P, et al. Compressive characteristics and energy absorption capacity of automobile energy-absorbing box with filled porous TPMS structures [J]. Applied Sciences, 2024, 14(9): 3790. doi: 10.3390/app14093790
    [29] WANG H, TAN D W, LIU Z P, et al. On crashworthiness of novel porous structure based on composite TPMS structures [J]. Engineering Structures, 2022, 252: 113640. doi: 10.1016/j.engstruct.2021.113640
    [30] 王春国, 文安松, 范子豪, 等. 泡沫增强复合材料点阵夹芯梁抗冲击性能 [J]. 高压物理学报, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807

    WANG C G, WEN A S, FAN Z H, et al. Dynamic failure of foam-reinforce composite lattice sandwich beam to local impulsive load [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014201. doi: 10.11858/gywlxb.20210807
    [31] 杨帆, 卞奕杰, 王鹏, 等. 界面增强多晶点阵结构的耐撞吸能性能 [J]. 高压物理学报, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827

    YANG F, BIAN Y J, WANG P, et al. Crashworthiness and energy absorption properties of polycrystal-like lattice structures strengthened by interfaces [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
  • 加载中
图(12)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  82
  • PDF下载量:  25
出版历程
  • 收稿日期:  2025-03-05
  • 修回日期:  2025-04-10
  • 录用日期:  2025-04-10
  • 网络出版日期:  2025-04-11
  • 刊出日期:  2025-09-05

目录

    /

    返回文章
    返回