镍/304不锈钢爆炸焊接试验及数值模拟

卓然 谢兴华 汪灿

卓然, 谢兴华, 汪灿. 镍/304不锈钢爆炸焊接试验及数值模拟[J]. 高压物理学报, 2025, 39(10): 105301. doi: 10.11858/gywlxb.20251041
引用本文: 卓然, 谢兴华, 汪灿. 镍/304不锈钢爆炸焊接试验及数值模拟[J]. 高压物理学报, 2025, 39(10): 105301. doi: 10.11858/gywlxb.20251041
ZHUO Ran, XIE Xinghua, WANG Can. Experimental Study and Numerical Simulation of Explosive Welding of Nickel/304 Stainless Steel[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105301. doi: 10.11858/gywlxb.20251041
Citation: ZHUO Ran, XIE Xinghua, WANG Can. Experimental Study and Numerical Simulation of Explosive Welding of Nickel/304 Stainless Steel[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105301. doi: 10.11858/gywlxb.20251041

镍/304不锈钢爆炸焊接试验及数值模拟

doi: 10.11858/gywlxb.20251041
详细信息
    作者简介:

    卓 然(1999-),男,硕士研究生,主要从事爆炸焊接理论与技术研究. E-mail:906636447@qq.com

    通讯作者:

    谢兴华(1963-),男,博士,教授,主要从事爆炸加工理论及应用研究. E-mail:xxh1963@163.com

  • 中图分类号: O389; O521.9; TG456.6

Experimental Study and Numerical Simulation of Explosive Welding of Nickel/304 Stainless Steel

  • 摘要: 为了研究镍/304不锈钢层状复合板界面的微观结构及形成机理,采用爆炸焊接技术,成功制备了镍/304不锈钢层状复合材料,通过扫描电子显微镜、能谱仪和电子背散射衍射仪研究了复合板的微观组织特征,利用拉伸试验测试了复合板的力学性能,并运用光滑粒子流体动力学方法对高速斜向冲击焊接过程进行了数值模拟。模拟结果再现了波状界面和射流的形成过程,支持和扩展了试验结果。结合界面密度的变化促进了元素扩散,晶粒弯曲反映了波形成过程中材料的运动特征,再结晶过程受到位错密度的影响,在结合界面形成了细晶粒区域。拉伸试样断裂后结合界面没有分层,金属板的抗拉强度和断裂伸长率分别达到705 MPa和24%。

     

  • 图  爆炸焊接示意图

    Figure  1.  Schematic diagram of explosion welding

    图  拉伸试样示意图(单位:mm)

    Figure  2.  Schematic diagram of tensile specimen (Unit: mm)

    图  爆炸焊接的二维SPH数值模拟模型

    Figure  3.  Two-dimensional SPH model of explosion welding in numerical simulation

    图  Ni/SS板结合界面的SEM图像

    Figure  4.  SEM images of Ni/SS plate bonding interface

    图  Ni/SS界面SPH数值模拟结果:(a)压力分布、(b)密度分布、(c)材料分布和(d)温度分布

    Figure  5.  SPH simulation results of the Ni/SS interface: (a) pressure distribution; (b) density distribution; (c) material distribution; (d) temperature distribution

    图  Ni/SS结合界面的元素分析结果:(a) 结合界面的元素映射,(b) 映射区域的元素组成

    Figure  6.  Elemental analysis results of Ni/SS bonding interfaces: (a) elemental mappings of the bonding interface; (b) elemental compositions of the mapping area

    图  图4(c)中 “A′-A”熔化区的线扫描结果

    Figure  7.  Line scan marked results as‘A′-A’ across the melting zone in Fig. 4(c)

    图  Ni/SS结合界面的EBSD结果:(a) 反极图,(b) 再结晶分析,(c) 晶界,(d) 核平均取向差分布

    Figure  8.  EBSD results of Ni/SS interfaces: (a) inverse pole figure; (b) recrystallization analysis; (c) grain boundary; (d) kernel average misorientation

    图  Ni/SS板的拉伸试验曲线

    Figure  9.  Tensile curve of Ni/SS plate

    图  10  拉伸断裂表面的SEM图像:(a)~(b) Ni/SS界面,(c)~(d) Ni侧,(e)~(f) SS侧

    Figure  10.  SEM images of tensile fracture surfaces: (a)−(b) Ni/SS interface; (c)−(d) Ni side; (e)−(f) SS side

    表  1  试验材料的化学成分

    Table  1.   Chemical composition of experimental materials

    Materials Ingredient Mass fraction/% Materials Ingredient Mass fraction/%
    Ni Ni 99.990 SS Fe 71.199
    Si 0.001 C 0.780
    W 0.001 Si 1.000
    Ta 0.001 Mn 1.950
    Fe 0.001 P 0.033
    Nb 0.001 S 0.028
    C 0.001 Ni 8.010
    O 0.002 Cr 17.000
    N 0.002
    下载: 导出CSV

    表  2  基板和复板材料参数

    Table  2.   Material parameters of base plate and flyer plate

    Materials Yield strength/MPa Melting point/℃ Thermal conductivity/
    (W·m−1·℃−1)
    Specific heat capacity/
    (J·kg−1·K−1)
    Ni 380 1453 91 444
    SS 550 1440 16 500
    下载: 导出CSV

    表  3  乳化基质组分

    Table  3.   Components of emulsified matrix

    IngredientMass fraction/%
    NH4NO373
    NaNO38
    H2O10
    C18H386
    C24H44O63
    下载: 导出CSV

    表  4  Mie-Grüneisen shock状态方程和Steinberg-Guinan强度模型材料参数

    Table  4.   Material parameters of Mie-Grüneisen shock equation of state and Steinberg-Guinan intensity model

    Materials Density/(g·cm−3) γ Initial shear modulus/GPa Initial yield stress/GPa Hardening constant
    Ni 8.9 1.93 85.5 0.14 46
    SS 7.9 1.93 77.0 0.34 43
    下载: 导出CSV

    表  5  拉伸试验得到的Ni/SS复合板的力学数据

    Table  5.   Mechanical properties of Ni/SS plate obatined by tensile test

    Tensile strength/MPaYield strength/MPaFracture elongation/%
    70958124
    下载: 导出CSV
  • [1] LI J H, LIANG X P, TAO H, et al. Study on the interface formation mechanism and properties of CoCrNi/316L composites prepared by explosive welding [J]. Journal of Materials Research and Technology, 2025, 35: 4587–4598. doi: 10.1016/j.jmrt.2025.02.122
    [2] CORIGLIANO P, CRUPI V, GUGLIELMINO E. Non linear finite element simulation of explosive welded joints of dissimilar metals for shipbuilding applications [J]. Ocean Engineering, 2018, 160: 346–353. doi: 10.1016/j.oceaneng.2018.04.070
    [3] ZHANG C H, SONG C B, ZHU W G, et al. Interfaces of the 5083Al/1060Al/TA1/Ni/SUS304 five-layer composite plate fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 19: 314–331. doi: 10.1016/j.jmrt.2022.04.157
    [4] PETUSHKOV V G. Physical interpretation of explosion welding near its lower boundary [J]. Combustion, Explosion and Shock Waves, 2000, 36(6): 771–776. doi: 10.1023/A:1002810908014
    [5] AFROUZIAN A, GRODEN C J, FIELD D P, et al. Additive manufacturing of Ti-Ni bimetallic structures [J]. Materials & Design, 2022, 215: 110461. doi: 10.1016/j.matdes.2022.110461
    [6] ZHOU J N, LUO N, LIANG H L, et al. Multi-scale simulation and microstructure characteristics of TC4 ELI/Al 6013 plates by explosive welding [J]. Journal of Manufacturing Processes, 2024, 124: 1180–1192. doi: 10.1016/j.jmapro.2024.07.014
    [7] SHMORGUN V G, BOGDANOV A I, TAUBE A O, et al. Evaluation of heat resistance and thermal conductivity of Ni-Cr-Al system layered coatings [J]. Metallurgist, 2022, 66(7/8): 934–941. doi: 10.1007/s11015-022-01405-z
    [8] LIPIŃSKA M, URA-BIŃCZYK E, MRÓZ S J, et al. Microstructure and corrosion resistance of Ni-Ti-Al multi-layer laminates manufactured by explosive welding with subsequent rolling [J]. Journal of Manufacturing Processes, 2023, 105: 84–98. doi: 10.1016/j.jmapro.2023.09.046
    [9] YUAN J X, SHAO F, BAI L Y, et al. Interface characteristics and mechanical properties of titanium/aluminum composites with an interlayer fabricated by explosive welding [J]. Journal of Central South University, 2024, 31(1): 43–58. doi: 10.1007/s11771-023-5476-4
    [10] SUN Z R, SHI C G, SHI H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments [J]. Materials & Design, 2020, 195: 109027. doi: 10.1016/j.matdes.2020.109027
    [11] 缪广红, 马宏昊, 沈兆武, 等. 蜂窝结构炸药及其应用 [J]. 含能材料, 2014, 22(5): 693–697. doi: 10.3969/j.issn.1006-9941.2014.05.022

    MIAO G H, MA H H, SHEN Z W, et al. Explosives with structure of honeycomb and its application [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 693–697. doi: 10.3969/j.issn.1006-9941.2014.05.022
    [12] ZHA Y C, ZHANG C H, ZHU W G, et al. Experimental and numerical investigations on the microstructural features and mechanical properties of explosively welded aluminum/titanium/steel trimetallic plate [J]. Materials Characterization, 2024, 209: 113669. doi: 10.1016/j.matchar.2024.113669
    [13] CHEN X, XIE X Q, HU J N, et al. Experimental and numerical study on the mechanism of interlayer explosive welding [J]. Journal of Materials Research and Technology, 2024, 30: 5529–5546. doi: 10.1016/j.jmrt.2024.04.209
    [14] WANG X, ZHENG Y Y, LIU H X, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method [J]. Materials & Design, 2012, 35: 210–219. doi: 10.1016/j.matdes.2011.09.047
    [15] KHALAJ G, MORADI M, ASADIAN E. Exploring the impact of rolling temperature on interface microstructure and mechanical properties of steel-bronze explosive welded bilayer composite sheets [J]. Welding in the World, 2023, 67(6): 1411–1425. doi: 10.1007/s40194-023-01495-6
    [16] DERIBAS A A, KUDINOV V M, MATVEENKOV F I, et al. Determination of the impact parameters of flat plates in explosive welding [J]. Combustion, Explosion and Shock Waves, 1967, 3(2): 182–186. doi: 10.1007/BF00748745
    [17] DERIBAS A A, KUDINOV V M, MATVEENKOV F I. Effect of the initial parameters on the process of wave formation in explosive welding [J]. Combustion, Explosion and Shock Waves, 1967, 3(4): 344–348. doi: 10.1007/BF00741684
    [18] ZHOU J N, LUO N, JIANG L, et al. Interface microstructure and numerical simulation investigations of Ni/TC18 composite tube fabricated by explosive welding [J]. Journal of Materials Engineering and Performance, 2025, 34(7): 5735–5750. doi: 10.1007/s11665-024-09544-x
    [19] PENG J X, HU C M, LI Y L, et al. Determination of parameters of Steinberg-Guinan constitutive model with shock wave experiments [J]. International Journal of Modern Physics B, 2008, 22: 1111–1116. doi: 10.1142/S0217979208046396
    [20] LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure and phase constitution of AA1060/TA2/SS30408 trimetallic composites fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 18: 564–576. doi: 10.1016/j.jmrt.2022.02.109
    [21] MAĆKOWIAK P, PŁACZEK D. Numerical simulation of the welding process for the prediction of temperature distribution on Al/steel explosion welded joint [J]. Journal of Physics: Conference Series, 2024, 2714: 012020. doi: 10.1088/1742-6596/2714/1/012020
    [22] CHU Q L, CAO Q L, ZHANG M, et al. Microstructure and mechanical properties investigation of explosively welded titanium/copper/steel trimetallic plate [J]. Materials Characterization, 2022, 192: 112250. doi: 10.1016/j.matchar.2022.112250
    [23] CHU Q L, ZHANG M, LI J H, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding [J]. Materials Science and Engineering: A, 2017, 689: 323–331. doi: 10.1016/j.msea.2017.02.075
    [24] KODUKULA S, MANNINEN T, PORTER D. Estimation of Lankford coefficients of austenitic and ferritic stainless steels using mean grain orientations from micro-texture measurements [J]. ISIJ International, 2021, 61(1): 401–407. doi: 10.2355/isijinternational.ISIJINT-2020-256
    [25] ZHOU Q, LIU R, ZHOU Q, et al. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite [J]. Materials Science and Engineering: A, 2021, 820: 141559. doi: 10.1016/j.msea.2021.141559
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  116
  • PDF下载量:  41
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-04-20
  • 网络出版日期:  2025-04-23
  • 刊出日期:  2025-10-05

目录

    /

    返回文章
    返回