沿[110]晶向冲击加载下单晶铁的结构相变:基于不同势函数的分子动力学模拟

吴美琪 战金辉 李江涛 王昆 刘晓星

吴美琪, 战金辉, 李江涛, 王昆, 刘晓星. 沿[110]晶向冲击加载下单晶铁的结构相变:基于不同势函数的分子动力学模拟[J]. 高压物理学报, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037
引用本文: 吴美琪, 战金辉, 李江涛, 王昆, 刘晓星. 沿[110]晶向冲击加载下单晶铁的结构相变:基于不同势函数的分子动力学模拟[J]. 高压物理学报, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037
WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037
Citation: WU Meiqi, ZHAN Jinhui, LI Jiangtao, WANG Kun, LIU Xiaoxing. Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110105. doi: 10.11858/gywlxb.20251037

沿[110]晶向冲击加载下单晶铁的结构相变:基于不同势函数的分子动力学模拟

doi: 10.11858/gywlxb.20251037
基金项目: 国家自然科学基金(21875255)
详细信息
    作者简介:

    吴美琪(1998-),女,硕士,主要从事冲击分子动力学研究. E-mail:15084698021@163.com

    通讯作者:

    战金辉(1981-),男,副研究员,主要从事燃料转化与催化反应机理、多相流动传递与反应模拟研究. E-mail:jhzhan@ipe.ac.cn

  • 中图分类号: O521.2; O469

Structural Phase Transition of Single-Crystalline Iron under Shock Loading along the [110] Direction: Molecular Dynamics Simulations Based on Different Potential Functions

  • 摘要: 作为冲击加载下金属材料动态行为研究的典型体系,单晶铁的相变机制与力学响应特性对于高压相变研究具有重要意义。利用分子动力学模拟方法研究了单晶铁沿[110]晶向冲击加载下的力学响应行为,考察了3种不同势函数(Ackland、Mishin、优化的MAEAM)在应力传递、位错活动和新相形成过程中的差异,探讨了塑性与相变的耦合机制。结果表明:采用Ackland 势函数预测的体心立方(body-centered cubic,BCC)相到密排六方(hexagonal close-packed,HCP)相的相变压力(14.03 GPa)最接近实验数据,并能较好地描述塑性变形与相变的耦合;Mishin势函数在高应变率下表现出独立的塑性阶段;优化的MAEAM势函数给出的BCC-FCC(face-centered cubic)相变压力阈值(49.91 GPa)较高,更符合实验未观测到FCC相的现象。此外,3种势函数作用下均表现出相同的相变机制,即从 BCC 压缩到剪切诱导的堆垛层错形成及其重新取向。

     

  • 图  单晶铁冲击加载示意图

    Figure  1.  Schematic diagram of impact loading of single crystal iron

    图  不同势函数模拟的10 K下BCC、FCC、HCP结构的焓-压力曲线(红色三角表示相变压力)

    Figure  2.  Enthalpy-pressure diagrams of BCC, FCC, and HCP structures based on the simulations under different potential functions at 10 K (The red triangle marks the phase transition pressure)

    图  不同冲击速度下晶体微观结构在18 ps时刻的分布及对应波形

    Figure  3.  Corresponding microstructure distribution under different impact velocities and the corresponding waveform at 18 ps

    图  不同势函数下相分数及位错密度随时间的演化

    Figure  4.  Evolution of phase fraction and dislocation density with time under different potential functions

    图  不同势函数模拟的18 ps时刻的位错、相结构、压力、von Mises应力与位置关系

    Figure  5.  Relationship for dislocation, phase structure, pressure and von Mises stress with position at 18 ps under different potential functions

    图  3种势函数模拟的相变过程

    Figure  6.  Phase transition process simulated by three potential functions

    表  1  不同势函数下的相转变压力

    Table  1.   Phase transition pressure under different potential functions

    Potential function pBCC-HCP/GPa pBCC-FCC/GPa
    Ackland 14.03 (13.75[30]) 14.43 (14.4[30])
    Mishin 29.62 36.38
    Optimized MAEAM 22.37 (22.3[13]) 49.91
    Experiment: polycrystal 12.89±0.15[16]
    下载: 导出CSV
  • [1] MAO H K, BASSETT W A, TAKAHASHI T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar [J]. Journal of Applied Physics, 1967, 38(1): 272–276. doi: 10.1063/1.1708965
    [2] LIN J F, HEINZ D L, CAMPBELL A J, et al. Iron-silicon alloy in Earthʼs core? [J]. Science, 2002, 295(5553): 313–315. doi: 10.1126/science.1066932
    [3] GU C, CHEN H Y, ZHAO Y S, et al. Formation of hierarchically structured martensites in pure iron with ultrahigh strength and stiffness [J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(42): e2408119121. doi: 10.1073/pnas.2408119121
    [4] TAKAHASHI T, BASSETT W A. High-pressure polymorph of iron [J]. Science, 1964, 145(3631): 483–486. doi: 10.1126/science.145.3631.483
    [5] NGUYEN J H, HOLMES N C. Melting of iron at the physical conditions of the Earthʼs core [J]. Nature, 2004, 427(6972): 339–342. doi: 10.1038/nature02248
    [6] SUN Y, MENDELEV M I, ZHANG F, et al. Ab initio melting temperatures of bcc and hcp iron under the Earth’s inner core condition [J]. Geophysical Research Letters, 2023, 50(5): e2022GL102447. doi: 10.1029/2022GL102447
    [7] BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
    [8] 唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003

    TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
    [9] 王昆, 肖时芳, 祝文军, 等. 动态载荷下铁相变的原子模拟研究进展 [J]. 高压物理学报, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729

    WANG K, XIAO S F, ZHU W J, et al. Progress on atomic simulations of phase transition of iron under dynamic loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040110. doi: 10.11858/gywlxb.20210729
    [10] ZHU Y Q, GONG Q H, YI M. Molecular dynamics investigation of shock-induced deformation behavior and failure mechanism in metallic materials [J]. Archives of Computational Methods in Engineering, 2024, 31(4): 2317–2344. doi: 10.1007/s11831-023-10045-8
    [11] LIU X, MASHIMO T, KAWAI N, et al. Isotropic phase transition of single-crystal iron (Fe) under shock compression [J]. Journal of Applied Physics, 2018, 124(21): 215101. doi: 10.1063/1.5040683
    [12] KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Physical Review B, 2005, 72(6): 064120. doi: 10.1103/PhysRevB.72.064120
    [13] WANG K, XIAO S F, DENG H Q, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
    [14] LU Z P, ZHU W J, LU T C, et al. Does the fcc phase exist in the Fe bcc-hcp transition? a conclusion from first-principles studies [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025007. doi: 10.1088/0965-0393/22/2/025007
    [15] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [16] JENSEN B J, GRAY III G T, HIXSON R S. Direct measurements of the α-ε transition stress and kinetics for shocked iron [J]. Journal of Applied Physics, 2009, 105(10): 103502. doi: 10.1063/1.3110188
    [17] KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
    [18] 崔新林, 祝文军, 邓小良, 等. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究 [J]. 物理学报, 2006, 55(10): 5545–5550. doi: 10.3321/j.issn:1000-3290.2006.10.095

    CUI X L, ZHU W J, DENG X L, et al. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion [J]. Acta Physica Sinica, 2006, 55(10): 5545–5550. doi: 10.3321/j.issn:1000-3290.2006.10.095
    [19] CUI X L, ZHU W J, HE H L, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
    [20] AMADOU N, DE RESSÉGUIER T. Pressure waves induced by the bcc-hcp phase transition in dynamically loaded single crystal iron [J]. Computational Materials Science, 2025, 247: 113559. doi: 10.1016/j.commatsci.2024.113559
    [21] YAO S L, YU J D, PEI X Y, et al. A coupled phase-field and crystal plasticity model for understanding shock-induced phase transition of iron [J]. International Journal of Plasticity, 2024, 173: 103860. doi: 10.1016/j.ijplas.2023.103860
    [22] WANG F M, INGALLS R. Iron bcc-hcp transition: local structure from X-ray-absorption fine structure [J]. Physical Review B, 1998, 57(10): 5647–5654. doi: 10.1103/PhysRevB.57.5647
    [23] HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the X-ray diffraction signal for the α-ε transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
    [24] LEVITAS V I. Strain-induced nucleation at a dislocation pile-up: a nanoscale model for high pressure mechanochemistry [J]. Physics Letters A, 2004, 327(2/3): 180–185. doi: 10.1016/j.physleta.2004.05.029
    [25] LEVITAS V I. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments [J]. Physical Review B, 2004, 70(18): 184118. doi: 10.1103/PhysRevB.70.184118
    [26] WANG B T, SHAO J L, ZHANG G C, et al. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations [J]. Journal of Physics: Condensed Matter, 2010, 22(43): 435404. doi: 10.1088/0953-8984/22/43/435404
    [27] SHAO J L, WANG P, ZHANG F G, et al. Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: molecular dynamics study [J]. Scientific Reports, 2018, 8(1): 7650. doi: 10.1038/s41598-018-25758-1
    [28] MEYER R, ENTEL P. Martensite-austenite transition and phonon dispersion curves of Fe1−x Nix studied by molecular-dynamics simulations [J]. Physical Review B, 1998, 57(9): 5140–5147. doi: 10.1103/PhysRevB.57.5140
    [29] MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of new interatomic potentials appropriate for crystalline and liquid iron [J]. Philosophical Magazine, 2003, 83(35): 3977–3994. doi: 10.1080/14786430310001613264
    [30] GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
    [31] HARRISON R J, VOTER A F, CHEN S P. Embedded atom potential for BCC iron [M]//VITEK V, SROLOVITZ D J. Atomistic Simulation of Materials: Beyond Pair Potentials. New York: Springer, 1989: 219–222.
    [32] KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [33] ACKLAND G J, MENDELEV M I, SROLOVITZ D J, et al. Development of an interatomic potential for phosphorus impurities in α-iron [J]. Journal of Physics: Condensed Matter, 2004, 16(27): S2629–S2642. doi: 10.1088/0953-8984/16/27/003
    [34] CHAMATI H, PAPANICOLAOU N I, MISHIN Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe (100) [J]. Surface Science, 2006, 600(9): 1793–1803. doi: 10.1016/j.susc.2006.02.010
    [35] HU W Y, SHU X L, ZHANG B W. Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials [J]. Computational Materials Science, 2002, 23(1/2/3/4): 175–189. doi: 10.1016/S0927-0256(01)00238-5
    [36] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  152
  • PDF下载量:  41
出版历程
  • 收稿日期:  2025-02-26
  • 修回日期:  2025-04-01
  • 录用日期:  2025-05-15
  • 网络出版日期:  2025-04-01
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回