氮化硅含量对现场混装乳化炸药爆炸性能的影响

朱正德 刘锋 匡照 符家坤

朱正德, 刘锋, 匡照, 符家坤. 氮化硅含量对现场混装乳化炸药爆炸性能的影响[J]. 高压物理学报, 2025, 39(10): 105101. doi: 10.11858/gywlxb.20251031
引用本文: 朱正德, 刘锋, 匡照, 符家坤. 氮化硅含量对现场混装乳化炸药爆炸性能的影响[J]. 高压物理学报, 2025, 39(10): 105101. doi: 10.11858/gywlxb.20251031
ZHU Zhengde, LIU Feng, KUANG Zhao, FU Jiakun. Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105101. doi: 10.11858/gywlxb.20251031
Citation: ZHU Zhengde, LIU Feng, KUANG Zhao, FU Jiakun. Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105101. doi: 10.11858/gywlxb.20251031

氮化硅含量对现场混装乳化炸药爆炸性能的影响

doi: 10.11858/gywlxb.20251031
基金项目: 国家自然科学基金(51134012)
详细信息
    作者简介:

    朱正德(1999-),男,硕士研究生,主要从事现场混装乳化炸药性能研究. E-mail:1139399044@qq.com

    通讯作者:

    刘 锋(1976-),男,博士,副教授,主要从事民用爆破器材及爆炸效应研究. E-mail:hyli@aust.edu.cn

  • 中图分类号: O521.9; TQ564.4

Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive

  • 摘要: 为了提高现场混装乳化炸药的爆炸性能,将氮元素含量丰富的氮化硅引入炸药,通过空中爆炸、爆速和铅柱压缩实验,测定氮化硅含量对现场混装乳化炸药空中冲击波参数、爆速和猛度的影响。实验结果表明,随着氮化硅的质量分数从0%提升至1.2%:炸药密度由1.02 g/cm3提升至1.11 g/cm3,空中冲击波压力峰值由0.1156 MPa提升至0.2977 MPa再下降到0.2408 MPa,最大峰值为最小值的2.58倍;比冲量由9.22 Pa·s提升至23.00 Pa·s,而后下降到19.59 Pa·s,最大比冲量为最小值的2.49倍;爆速则呈现先下降至3265.66 m/s后上升至4830.60 m/s再下降至4541.51 m/s的变化趋势,最大爆速为最小值的1.48倍;猛度由13.86 mm提升至19.40 mm再缩减到17.18 mm,最大猛度为最小值的1.40倍。实验结果显示,氮化硅能够提高现场混装乳化炸药的爆炸性能,对现场混装乳化炸药配方优化设计具有一定的参考意义。

     

  • 图  现场混装乳化基质

    Figure  1.  On-site mixed bulk emulsion matrix

    图  空中爆炸冲击波测试系统

    Figure  2.  Airborne explosive shockwave test system

    图  爆速测试系统

    Figure  3.  Detonation velocity test system

    图  猛度测试系统

    Figure  4.  Brisance test system

    图  炸药样品的微观结构

    Figure  5.  Microstructure of explosive samples

    图  乳化炸药空中爆炸压力-时间曲线

    Figure  6.  Pressure-time curves of emulsion explosives in air explosion

    图  Si3N4的质量分数、敏化剂的质量分数与超压峰值的拟合曲面

    Figure  7.  Fitted surfaces of Si3N4 mass fraction, sensitization mass fraction, and sample peak pressure

    图  比冲量的变化趋势

    Figure  8.  Trend of specific impulses

    图  Si3N4的爆轰反应机理

    Figure  9.  Silicon nitride burst reaction mechanism

    图  10  爆速的变化趋势

    Figure  10.  Trend of detonation velocity

    图  11  猛度变化趋势

    Figure  11.  Trend of brisance

    表  1  现场混装乳化炸药原材料和爆炸产物的物化参数

    Table  1.   Physicochemical parameters of raw materials and explosive products of field mixed emulsion explosives

    Material Relative molecular mass/(g·mol−1) Heat of formation/(kJ·mol−1) Oxygen balance/(g·g−1)
    NH4NO3 80.04 353.46 0.20
    NaNO3 84.99 462.66 0.47
    H2O 18.01 286.20 0
    C18H38 254.51 558.96 −3.46
    C16H32 224.44 661.55 −3.42
    C24H44O6 428.63 894.52 −2.39
    Si3N4 140.28 751.57 −0.68
    SiO2 60.08 910.90 0
    N2 28.01 0 0
    CO 28.01 111.47 −0.57
    CO2 44.01 393.50 0
    Na2O 61.98 414.22 0
    下载: 导出CSV

    表  2  爆炸参数理论计算结果

    Table  2.   Theoretical calculation results of explosion parameters

    Sample nOB/(g·g−1) QV/(kJ·kg−1) vD/(m·s−1) p/GPa TB/K
    0 0.0718 2491.29 4380.92 4.90 2044.30
    1 0.0732 2519.71 4404.29 4.96 2058.13
    2 0.0745 2548.13 4427.51 5.01 2071.89
    3 0.0772 2604.98 4473.51 5.11 2099.19
    4 0.0800 2661.82 4518.93 5.22 2126.22
    下载: 导出CSV

    表  3  炸药样品的密度

    Table  3.   Density of explosive samples

    Sensitizer mass fraction/%Explosive sample density/(g·cm−3)
    Sample 0Sample 1Sample 2Sample 3Sample 4
    0.301.021.031.071.091.11
    0.450.930.950.971.011.05
    下载: 导出CSV

    表  4  不同炸药样品的空中冲击波参数

    Table  4.   Parameters of the airborne shock wave of different explosive samples

    SampleSensitizer mass fraction/%Peak pressure/MPaPositive pressure time/μsSpecific impulse/(Pa·s)
    00.300.1364229.929.22
    0.450.1156243.3710.38
    10.300.2576292.8719.04
    0.450.2352268.9720.70
    20.300.2977270.5623.00
    0.450.2653310.3422.74
    30.300.2888267.7422.46
    0.450.2776297.3122.46
    40.300.2558310.4821.99
    0.450.2408301.3719.59
    下载: 导出CSV

    表  5  不同炸药样品的爆速

    Table  5.   Detonation velocity of different explosive samples

    Sample Sensitizer mass fraction/% Experimental detonation velocity/(m·s−1) Theoretical detonation velocity/(m·s−1)
    00.303654.624380.92
    0.453867.454380.92
    10.303236.244404.29
    0.453265.664404.29
    20.303968.254427.51
    0.453692.764427.51
    30.304440.504473.51
    0.454830.604473.51
    40.304332.764518.93
    0.454541.514518.93
    下载: 导出CSV

    表  6  不同炸药样品的猛度

    Table  6.   Brisance of different explosive samples

    SampleSensitizer mass fraction/%Brisance/mm
    00.3013.86
    0.4513.59
    10.3017.15
    0.4516.03
    20.3018.45
    0.4518.41
    30.3019.30
    0.4519.40
    40.3017.16
    0.4517.18
    下载: 导出CSV
  • [1] 汪旭光. 乳化炸药 [M]. 2版. 北京: 冶金工业出版社, 2008.

    WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008.
    [2] 钱海. 铝粉对乳化炸药爆炸性能和热安定性的影响 [D]. 淮南: 安徽理工大学, 2017.

    QIAN H. Effect of aluminum powder on detonation performance and thermal stability of emulsion explosives [D]. Huainan: Anhui University of Science and Technology, 2017.
    [3] YUNOSHEV A S, PLASTININ A V, VORONIN M S. Effect of aluminum additive on the detonation velocity and acceleration ability of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2021, 57(6): 719–725. doi: 10.1134/S0010508221060113
    [4] MISHRA A K, AGRAWAL H, RAUT M. Effect of aluminum content on detonation velocity and density of emulsion explosives [J]. Journal of Molecular Modeling, 2019, 25(3): 70. doi: 10.1007/s00894-019-3961-3
    [5] 龚悦, 何杰, 汪旭光, 等. 钛粉对乳化炸药爆轰性能和热分解特性的影响 [J]. 含能材料, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006

    GONG Y, HE J, WANG X G, et al. Influence of titanium powder on detonation performances and thermal decomposition characteristics of emulsion explosive [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006
    [6] 程扬帆, 汪泉, 龚悦, 等. MgH2型复合敏化储氢乳化炸药的制备及其爆轰性能 [J]. 化工学报, 2017, 68(4): 1734–1739. doi: 10.11949/j.issn.0438-1157.20161341

    CHENG Y F, WANG Q, GONG Y, et al. Preparation and detonation properties of MgH2 type of composite sensitized emulsion explosives [J]. CIESC Journal, 2017, 68(4): 1734–1739. doi: 10.11949/j.issn.0438-1157.20161341
    [7] 程扬帆, 汪泉, 龚悦, 等. 敏化方式对MgH2型储氢乳化炸药爆轰性能的影响 [J]. 含能材料, 2017, 25(2): 167–172. doi: 10.11943/j.issn.1006-9941.2017.02.013

    CHENG Y F, WANG Q, GONG Y, et al. Effect of sensitizing methods on the detonation performances of MgH2-based hydrogen storage emulsion explosives [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 167–172. doi: 10.11943/j.issn.1006-9941.2017.02.013
    [8] CHENG Y F, MA H H, LIU R, et al. Explosion power and pressure desensitization resisting property of emulsion explosives sensitized by MgH2 [J]. Journal of Energetic Materials, 2014, 32(3): 207–218. doi: 10.1080/07370652.2013.818078
    [9] CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. doi: 10.1002/prep.201700045
    [10] WANG F, MA H H, SHEN Z W. Experimental study on the effect of titanium hydride content on the detonation performance of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(2): e202300235. doi: 10.1002/prep.202300235
    [11] LIU R, WANG X G, WANG H, et al. Thermal decomposition behaviors and reaction mechanism of emulsion explosive with the addition of TiH2 powders [J]. Case Studies in Thermal Engineering, 2025, 65: 105583. doi: 10.1016/j.csite.2024.105583
    [12] 张续, 吴红波, 张洪, 等. 油相材料对现场混装乳化炸药性能的影响 [J]. 安徽化工, 2019, 45(4): 65–67. doi: 10.3969/j.issn.1008-553X.2019.04.021

    ZHANG X, WU H B, ZHANG H, et al. Effect of oil phase materials on the performance of field mixed emulsion explosive [J]. Anhui Chemical Industry, 2019, 45(4): 65–67. doi: 10.3969/j.issn.1008-553X.2019.04.021
    [13] 刘锋, 何祥, 吴攀宇, 等. 内相粒径对现场混装乳化炸药爆炸性能的影响 [J]. 火炸药学报, 2023, 46(9): 825–833. doi: 10.14077/j.issn.1007-7812.202211024

    LIU F, HE X, WU P Y, et al. Effect of internal phase particle size on explosion performance of on-site mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(9): 825–833. doi: 10.14077/j.issn.1007-7812.202211024
    [14] 牛草原, 黄文尧, 刘小辉, 等. 多孔粒状硝酸铵质量分数对现场混装乳化炸药的性能影响 [J]. 火炸药学报, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017

    NIU C Y, HUANG W Y, LIU X H, et al. Influence of porous granular ammonium nitrate content on the performance of field mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017
    [15] 匡照. 氮化铝质量分数对现场混装乳化炸药性能的影响 [D]. 淮南: 安徽理工大学, 2024.

    KUANG Z. Effect of aluminum nitride content on the performance of field-mixed emulsion explosives [D]. Huainan: Anhui University of Science and Technology, 2024.
    [16] 郇昌天, 李强, 蒋丹宇. 氮化硅陶瓷的应用和酸腐蚀研究进展 [J]. 现代技术陶瓷, 2011, 32(3): 3–8. doi: 10.3969/j.issn.1005-1198.2011.03.002

    HUAN C T, LI Q, JIANG D Y. Application of Si3N4 and research progress on corrosion behavior [J]. Advanced Ceramics, 2011, 32(3): 3–8. doi: 10.3969/j.issn.1005-1198.2011.03.002
    [17] 陈思员, 姜贵庆, 俞继军, 等. 氮化硅的氧化机制研究 [J]. 宇航材料工艺, 2010, 40(1): 28–31. doi: 10.3969/j.issn.1007-2330.2010.01.007

    CHEN S Y, JIANG G Q, YU J J, et al. Oxidation mechanism study of silicon nitride [J]. Aerospace Materials & Technology, 2010, 40(1): 28–31. doi: 10.3969/j.issn.1007-2330.2010.01.007
    [18] 刘胜, 王营营, 满延进, 等. 氮化硅粉改性及其陶瓷高温摩擦磨损性能研究 [J]. 陶瓷学报, 2024, 45(1): 139–149. doi: 10.13957/j.cnki.tcxb.2024.01.014

    LIU S, WANG Y Y, MAN Y J, et al. Modification of silicon nitride powders and friction and wear properties of ceramics at high temperature [J]. Journal of Ceramics, 2024, 45(1): 139–149. doi: 10.13957/j.cnki.tcxb.2024.01.014
    [19] 黄勇, 代建清, 许兴利, 等. 氮化硅粉体的表面化学性质和水中的胶体特性 [J]. 硅酸盐通报, 2000, 19(2): 35–42, 28. doi: 10.3969/j.issn.1001-1625.2000.02.011

    HUANG Y, DAI J Q, XU X L, et al. Surface characteristics and aqueous colloidal chemistry of silicon nitride powder [J]. Bulletin of the Chinese Ceramic Society, 2000, 19(2): 35–42, 28. doi: 10.3969/j.issn.1001-1625.2000.02.011
    [20] 王月隆. 氮化硅粉体合成及其高导热陶瓷的组织与性能研究 [D]. 北京: 北京科技大学, 2022.

    WANG Y L. Research on powder preparation and microstructure and properties of silicon nitride ceramics with high thermal conductivity [D]. Beijing: University of Science and Technology Beijing, 2022.
    [21] 黄寅生. 炸药理论 [M]. 北京: 北京理工大学出版社, 2016.

    HUANG Y S. Explosives theory [M]. Beijing: Beijing Institute of Technology Press, 2016.
    [22] 刘锋, 匡照, 吴攀宇, 等. 内相粒径对现场混装乳化炸药热感度的影响 [J]. 火炸药学报, 2022, 45(5): 697–702. doi: 10.14077/j.issn.1007-7812.202204018

    LIU F, KUANG Z, WU P Y, et al. Effect of internal phase particle size on thermal sensitivity of on-site mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2022, 45(5): 697–702. doi: 10.14077/j.issn.1007-7812.202204018
    [23] 崔雪峰, 刘万义, 孟祥宇, 等. 乳化炸药的配方设计与应用评价 [J]. 采矿技术, 2021, 21(1): 27–29, 36. doi: 10.3969/j.issn.1671-2900.2021.01.009

    CUI X F, LIU W Y, MENG X Y, et al. Formulation design and application evaluation of emulsion explosive [J]. Mining Technology, 2021, 21(1): 27–29, 36. doi: 10.3969/j.issn.1671-2900.2021.01.009
    [24] 崔鑫. 乳化炸药热稳定性研究 [D]. 淮南: 安徽理工大学, 2007.

    CUI X. Study of thermal stability of emulsion explosive [D]. Huainan: Anhui University of Science and Technology, 2007.
    [25] 刘锋, 汪全, 吴攀宇, 等. 内相粒径对现场混装乳化炸药基质抗振动性能的影响 [J]. 化工学报, 2022, 73(9): 4217–4225. doi: 10.11949/0438-1157.20220742

    LIU F, WANG Q, WU P Y, et al. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217–4225. doi: 10.11949/0438-1157.20220742
    [26] 国家技术监督局. 炸药猛度试验铅柱压缩法: GB/T 12440—1990 [S]. 北京: 中国标准出版社, 1990.
    [27] CALIFANO V, CALABRIA R, MASSOLI P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions [J]. Fuel, 2014, 117: 87–94. doi: 10.1016/j.fuel.2013.08.073
    [28] HAMPSHIRE S, POMEROY M J. Silicon nitride grain boundary glasses: chemistry, structure and properties [J]. Key Engineering Materials, 2011, 484: 46–51. doi: 10.4028/www.scientific.net/KEM.484.46
    [29] 隋智通. 硅氮化反应的平衡及动力学研究 [J]. 东北工学院学报, 1980(1): 31–38.

    SUI Z T. Equilibrations and kinetics of silicon nitridation [J]. Journal of Northeast Institute of Technology, 1980(1): 31–38.
    [30] 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展 [J]. 化工学报, 2022, 73(1): 73–84. doi: 10.11949/0438-1157.20210866

    XIANG M Q, GENG Y Q, ZHU Q S. Research advances in preparation technology and quality of silicon nitride powder [J]. CIESC Journal, 2022, 73(1): 73–84. doi: 10.11949/0438-1157.20210866
    [31] 黄文尧, 颜事龙. 炸药化学与制造 [M]. 北京: 冶金工业出版社, 2009.

    HUANG W Y, YAN S L. Explosives chemistry and production [M]. Beijing: Metallurgical Industry Press, 2009.
    [32] 杨胜晖, 郑波. 含铝温压炸药的爆炸能量结构研究 [J]. 爆破器材, 2019, 48(2): 20–24. doi: 10.3969/j.issn.1001-8352.2019.02.004

    YANG S H, ZHENG B. Explosion energy structure of aluminized thermobaric explosive [J]. Explosive Materials, 2019, 48(2): 20–24. doi: 10.3969/j.issn.1001-8352.2019.02.004
    [33] 许祖熙, 段卫东, 刘瑞, 等. 铝粉质量分数及颗粒度对乳化炸药做功能力的影响 [J]. 工程爆破, 2017, 23(6): 86–90. doi: 10.3969/j.issn.1006-7051.2017.06.019

    XU Z X, DUAN W D, LIU R, et al. The effect of aluminum content and granularity on workability of emulsion explosives [J]. Engineering Blasting, 2017, 23(6): 86–90. doi: 10.3969/j.issn.1006-7051.2017.06.019
    [34] XIE R J, MITOMO M, HUANG L P, et al. Joining of silicon nitride ceramics for high-temperature applications [J]. Journal of Materials Research, 2000, 15(1): 136–141. doi: 10.1557/JMR.2000.0023
    [35] NARUSHIMA T, GOTO T, HAGIWARA J, et al. High-temperature oxidation of chemically vapor-deposited silicon nitride in a carbon monoxide-carbon dioxide atmosphere [J]. Journal of the American Ceramic Society, 1994, 77(11): 2921–2925. doi: 10.1111/j.1151-2916.1994.tb04525.x
    [36] 何志伟, 朱文宇, 葛玉强, 等. 铝灰替代含铝乳化炸药中铝粉的可行性研究 [J]. 爆破器材, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006

    HE Z W, ZHU W Y, GE Y Q, et al. Feasibility study on substitution of aluminum powder in aluminized emulsion explosive with aluminum ash [J]. Explosive Materials, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006
    [37] WANG Y X, MA H H, SHEN Z W, et al. Detonation characteristics of emulsion explosives sensitized by hydrogen-storage glass microballoons [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 939–947. doi: 10.1002/prep.201800044
    [38] CHENG Y F, YAO Y L, LI D Y, et al. Effects of boron powders on the detonation performance of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(3): e202200277. doi: 10.1002/prep.202200277
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  96
  • PDF下载量:  19
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-03-18
  • 网络出版日期:  2025-03-19
  • 刊出日期:  2025-10-05

目录

    /

    返回文章
    返回